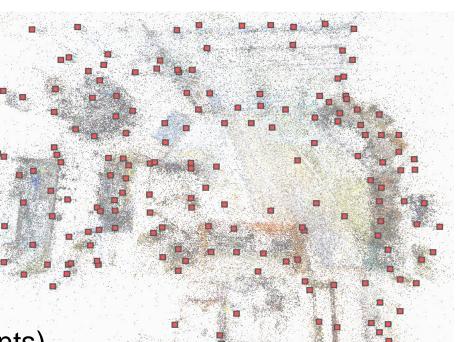


UNIVERSITY OF MINNESOTA

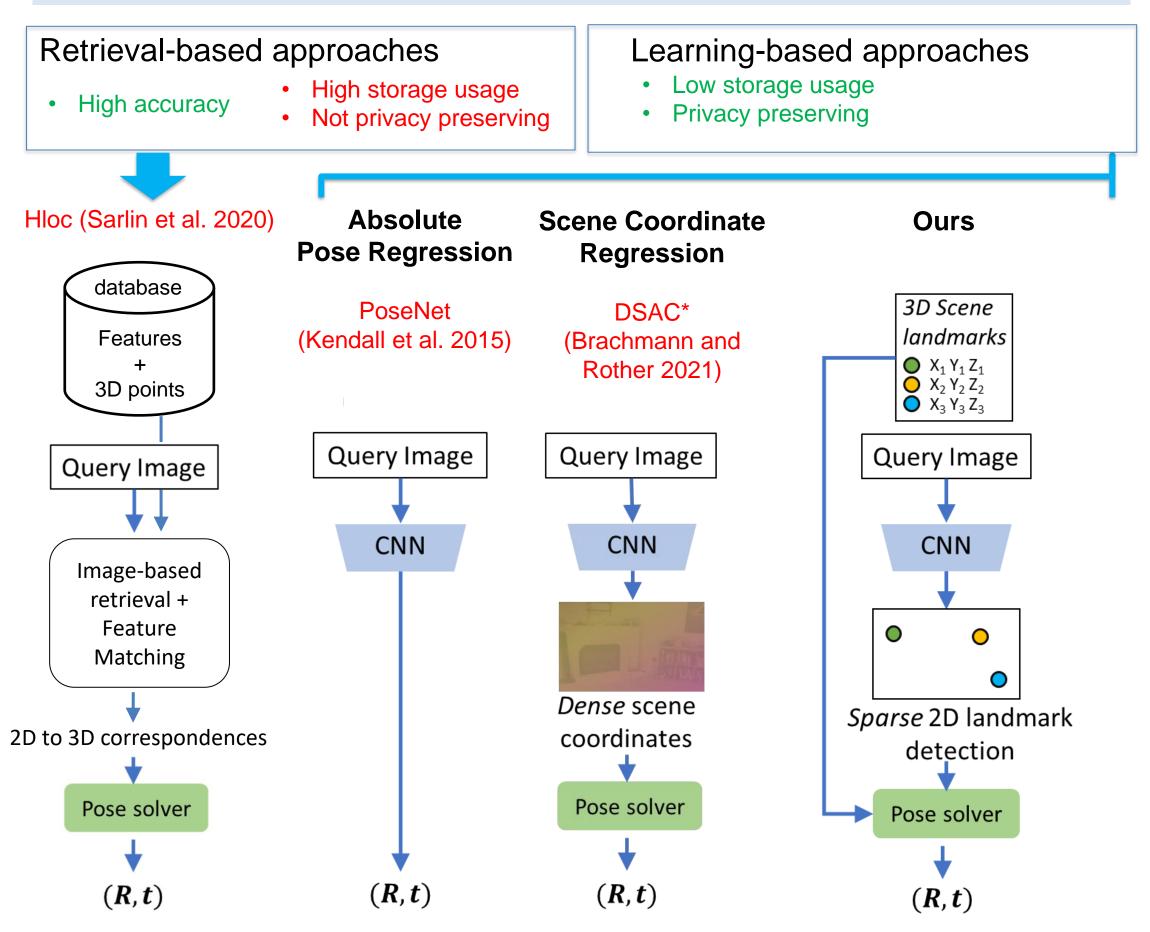
2 Microsoft


Tien Do¹

Goal

We present a method to compute the exact 3D position and 3D orientation of the camera within a precomputed 3D map of the scene from a query image. We solve the task accurately and efficiently *i.e.*, without requiring extensive storage of visual features which helps to further address privacy concerns in existing localization techniques.

Main idea: Scene Landmarks Detection

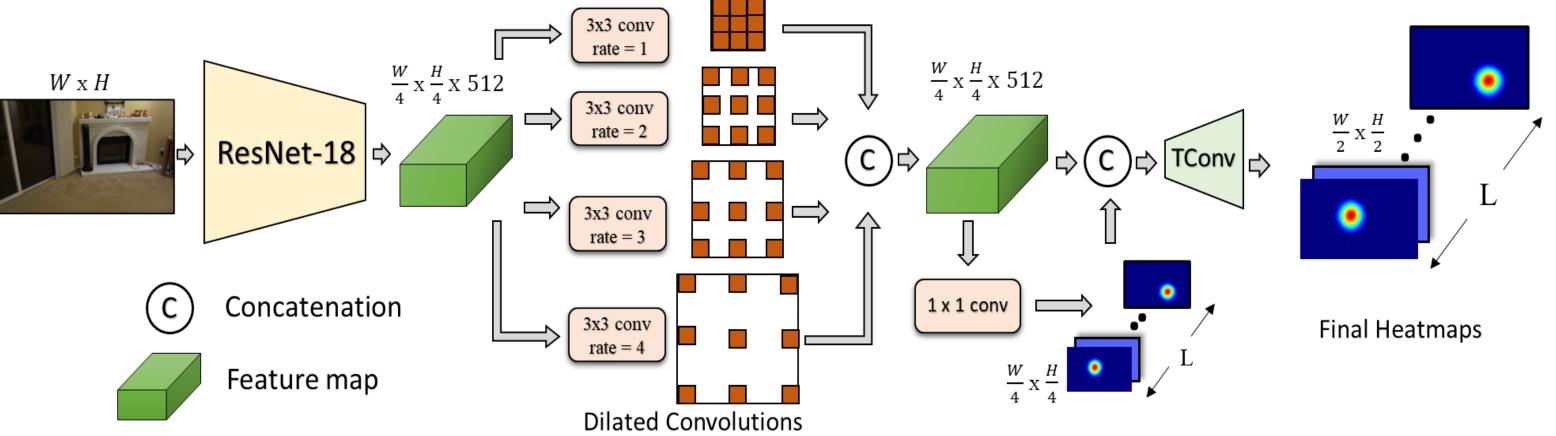


- Designate a few scene landmarks (3D points).
- Learn a detector to localize those scene landmarks in a query image.
- Estimate camera pose from the 2D-3D scene landmark correspondences.

Our contribution

- New formulation for *heatmap-based landmark localization* and *bearing angle* estimation for solving the camera localization problem.
- New dataset to address challenging scenarios in indoor environments.
- 3. Superior results compared to existing learned localization methods

Comparison with related work


Learning to Detect Scene Landmarks for Camera Localization

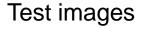
Ondrej Miksik²

Joseph DeGol²

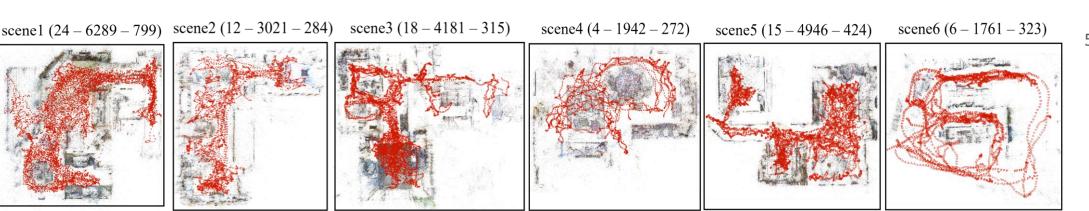
Scene Landmark Detector (SLD)

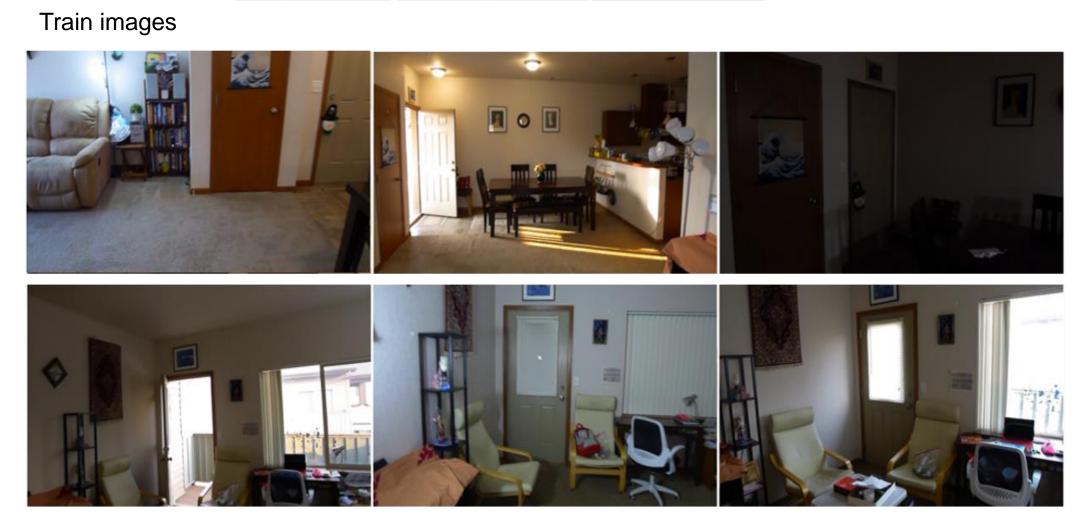
• Leverage mature CNN architecture for heatmap-based keypoint detection, commonly used in many detection and pose estimation tasks (face, body pose, hands, object, etc)

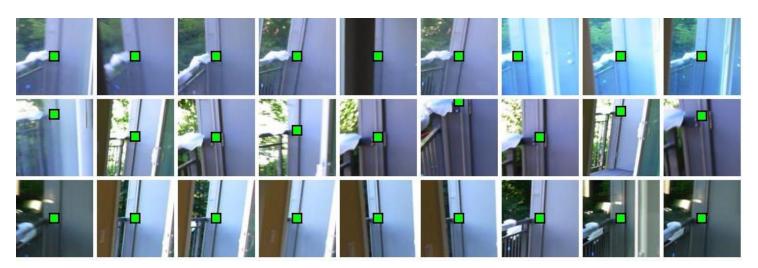
Neural Bearing Estimator (NBE)

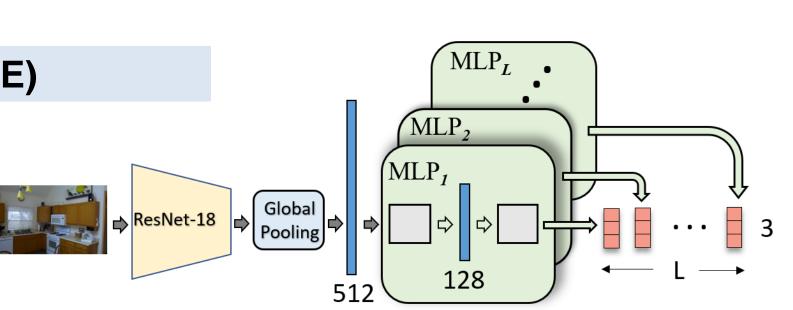

- Directly predict landmark bearing vector (3D) from the image appearance.
- Can predict bearings for landmarks outside the camera's field-of-view.

Landmark Selection


- Run structure-from-motion on training images. Select a subset of salient points (discriminative, repeatable, permanent) that maximizes scene coverage,
- Selected using an iterative greedy approach.

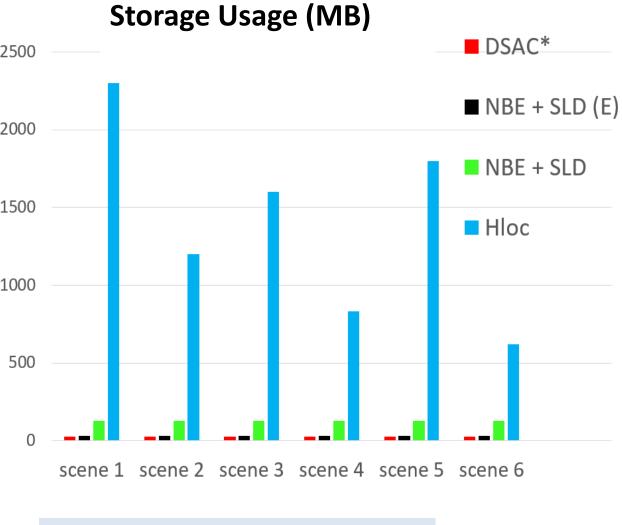

Indoor-6 dataset


- · Images span multiple days and times (incl. day/night images)
- Dramatic lighting variation
- Scene changes with time.



Example of training image patches depicting a scene landmark.

Hyun Soo Park¹


Sudipta N. Sinha²

Results (Indoor-6)

Accuracy evaluation:

Method		INDOOR-6																
	scene1				scene2			scene3			scene4			scene5			scene6	
	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑
PoseNet	159.0	7.46	0.0	193.0	8.42	0.0	141.0	9.26	0.0	109.4	7.84	0.0	179.3	9.37	0.0	118.2	9.26	0.0
NBE	22.3	4.03	2.0	29.9	4.88	2.1	24.7	4.85	2.9	39.9	5.35	1.5	37.8	5.28	0.0	30.8	6.60	0.3
DSAC*	12.3	2.06	18.7	17.5	3.4	12.3	13.1	2.34	19.7	5.5	0.84	44.9	40.7	6.72	10.6	6.0	1.40	44.3
NBE+SLD(E)	7.5	1.15	28.4	11.8	2.30	26.1	6.2	1.28	43.5	5.1	0.75	48.9	6.3	0.96	37.5	5.8	1.30	44.6
NBE+SLD	6.5	0.9	38.4	7.4	1.6	37.0	4.4	0.91	53.0	4.0	0.63	62.5	6.0	0.91	40.0	5.0	0.99	50.5
HLoc-L ₃₀₀	-	-	12.9	-	-	7.0	-	-	27.3	-	-	44.5	-	-	9.7	-	-	28.4
HLoc-L ₁₀₀₀	8.7	1.20	33.3	-	-	25.4	5.5	1.02	48.3	4.3	0.64	56.6	-	-	21.9	5.6	1.10	47.4
HLoc-L ₃₀₀₀	5.3	0.73	48.1	-	-	31.3	3.4	0.65	61.9	3.6	0.54	69.5	-	-	31.1	3.7	0.71	59.1
HLoc	3.2	0.47	64.8	3.9	0.76	60.6	2.1	0.37	81.0	3.3	0.47	70.6	6.1	0.86	42.7	2.1	0.42	79.9
HLoc+SLD	2.9	0.43	68.7	3.4	0.63	62.7	1.9	0.32	81.0	2.8	0.45	73.9	5.4	0.78	45.3	2.1	0.42	82.0

Ablation study:

Method	INDOOR-6 (recall (5cm, 5°))														
Methou					scene1	scene2	scene3	scene4	scene5	scene6					
	Patches	Res.	Aug.	L		# of visible points $\geq 8 \uparrow$									
DSAC*	-	-	-	-	-	-	-	-	-	-	25.1				
SLD	×	1/4	×	200	24.9	20.4	42.2	77.6	40.1	39.6	18.2				
SLD	\checkmark	1/4	×	200	77.2	38.0	53.0	94.1	72.2	66.3	28.2				
SLD	\checkmark	1/2	×	200	61.1	38.4	44.4	91.5	58.3	59.4	36.9				
SLD	\checkmark	1/2	\checkmark	200	66.0	34.9	52.4	90.4	62.7	57.6	38.4				
SLD	\checkmark	1/2	\checkmark	300	74.6	48.0	68.6	94.9	88.9	66.3	42.7				
SLD	\checkmark	1/2	\checkmark	400	73.8	45.1	80.3	96.3	93.2	74.3	42.4				

Main Insights:

- **Hloc** (with unlimited storage) outperforms all learned methods;
- but its accuracy decreases as storage budget constraints are imposed.
- **Hloc+SLD** (the combination of both methods) works best; outperforms **Hloc**!

Results (7-scenes)

Method		7-scenes																				
	chess			fire			heads				office			pumpkin			redkitchen			stairs		
	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(cm.)↓	(deg.)↓	(%)↑	(%)↑
MS-Transformer ⁺	11	4.66	_	24	9.6	_	14	12.19	_	17	5.66	_	18	4.44	-	17	5.94	_	26	8.45	-	_
HLoc ⁺	2.4	0.77	94.2	1.8	0.75	93.7	0.9	0.59	99.7	2.6	0.77	83.2	4.4	1.15	55.1	4.0	1.38	61.9	5.1	1.46	49.4	76.7
DSAC*+	1.8	0.59	97.8	1.7	0.77	94.5	1.0	0.66	98.8	2.7	0.79	83.9	3.9	1.05	62.0	3.9	1.24	65.5	3.5	0.93	78.0	82.9
NBE+SLD+	2.2	0.75	93.7	1.8	0.73	94.1	0.9	0.68	96.6	3.2	0.91	74.8	5.6	1.55	44.6	5.3	1.52	45.7	5.5	1.41	44.6	70.6
HLoc	0.8	0.11	100	0.9	0.24	99.4	0.6	0.25	100	1.2	0.20	100	1.4	0.15	100	1.1	0.14	98.6	2.9	0.80	72.0	95.7
DSAC*	0.5	0.17	99.9	0.8	0.28	98.9	0.5	0.34	99.8	1.2	0.34	98.1	1.2	0.28	99.0	0.7	0.21	97.0	2.7	0.78	92	97.8
NBE+SLD	0.6	0.18	100	0.7	0.26	99.6	0.6	0.35	98.4	1.3	0.33	95.8	1.5	0.33	94.4	0.8	0.19	96.6	2.6	0.72	85.2	95.7

Conclusion

Code and data available: https://github.com/microsoft/SceneLandmarkLocalization

We propose a new learned localization approach, where we designate scene-specific salient points as scene landmarks, leverage mature CNN architectures to detect them, and compute camera pose using a PnP solver from the 2D-3D scene landmark correspondences. Our method outperforms learned methods (DSAC*, etc.) but not yet as accurate as retrieval-based methods.

Qualitative Results

NBE+SLD: uses a ResNet18 backbone, **NBE+SLD(E)**: uses an Efficient-Net (compact) backbone.

Our method NBE+SLD performs the best amongst learned localization methods.