Learning to Detect Scene Landmarks for Camera Localization

Tien Do1 \quad Ondrej Miksik2 \quad Joseph DeGol2 \quad Hyun Soo Park1 \quad Sudipta N. Sinha2

1University of Minnesota \quad 2Microsoft

CVPR 2022
Camera localization problem

Given a query image, compute the 3D position and 3D orientation of the camera within a precomputed 3D map of the scene.
Related work

• Vast literature

• Retrieval-based methods
 • Hierarchical Localization (Hloc)
 Learning Feature Matching with Graph Neural Networks [Sarlin et al. 2020]

• Learned methods
 • Absolute pose regression (APR)
 PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization [Kendall et al. 2015]

 • Dense scene coordinate regression (SCR)
 Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images [Shotton et al. 2013]

 Visual Camera Re-Localization from RGB and RGB-D Images Using DSAC [Brachmann and Rother 2021]
Retrieval-based methods

- Accurate
- High storage requirements
- Not privacy preserving
 - Image can be reconstructed from stored feature descriptors

Revealing scenes by inverting structure from motion reconstructions. [Pittaluga et al. 2019]
Learned methods (low storage)

Abs. Pose Regression (PoseNet)

- Query Image
 - CNN
 - \mathbf{R}, \mathbf{t}

Scene Coordinate Regression (DSAC*)

- Query Image
 - CNN
 - Dense scene coordinates
 - Pose solver
 - \mathbf{R}, \mathbf{t}
Main Idea

• Designate a few scene landmarks (3D points).
• Learn a detector to localize those scene landmarks in a query image.
• Estimate camera pose from the 2D-3D scene landmark correspondences.
Learned methods (low storage)

Abs. Pose Regression (PoseNet)

```
Query Image
  ↓
  CNN
  ↓
(R, t)
```

Scene Coordinate Regression (DSAC*, ...)

```
Query Image
  ↓
  CNN
  ↓
Dense scene coordinates
  ↓
Pose solver
  ↓
(R, t)
```

Scene Landmark Detection (ours)

```
Query Image
  ↓
  CNN
  ↓
Sparse 2D landmark detection
  ↓
Pose solver
  ↓
(R, t)
```

Scene landmarks (3D points)

- $X_1 Y_1 Z_1$
- $X_2 Y_2 Z_2$
- $X_3 Y_3 Z_3$
Learned methods (low storage)

APR (PoseNet)
- **Query Image**
- **CNN**
- **(R, t)**

SCR (DSAC*)
- **Query Image**
- **CNN**
- **Dense scene coordinates**
- **Pose solver**
- **(R, t)**

3D Scene landmarks
- **Sparse 2D landmark detection**
- **Pose solver**
- **(R, t)**
Scene Landmark Detector (SLD) Model

- Output heatmap for each landmark
- Dilated convolution architecture
- Mean Sq. Error (MSE) pixel-wise loss
- Homography and intensity data augmentation
Example: training data
Neural Bearing Estimator (NBE)

- From image appearance, directly predict landmark bearing vector (3D)
- Can do it for visible as well as invisible landmarks
Indoor-6 Dataset

- Multiple captures (different day and time) of the same scene
- SfM reconstructions
Results

- NBE+SLD (ours) achieves the best performance among learned (low storage) methods.
- NBE+SLD(E) outperforms SOTA DSAC* using similar network capacity.
- NBE+SLD (ours) outperforms Hloc_{1000} that uses 3x more landmarks.

<table>
<thead>
<tr>
<th></th>
<th>Storage (MB)</th>
<th>scene1</th>
<th>scene2</th>
<th>scene3</th>
<th>scene4</th>
<th>scene5</th>
<th>scene6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PoseNet</td>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DSAC*</td>
<td>27</td>
<td>18.7</td>
<td>12.3</td>
<td>19.7</td>
<td>44.9</td>
<td>10.6</td>
<td>44.3</td>
</tr>
<tr>
<td>NBE+SLD(E)_{300}</td>
<td>29</td>
<td>28.4</td>
<td>26.1</td>
<td>43.5</td>
<td>48.9</td>
<td>37.5</td>
<td>44.6</td>
</tr>
<tr>
<td>NBE+SLD_{300}</td>
<td>132</td>
<td>38.4</td>
<td>37.0</td>
<td>53.0</td>
<td>62.5</td>
<td>40.0</td>
<td>50.5</td>
</tr>
</tbody>
</table>

Recall (%) @ (5cm, 5°)

- NBE+SLD (ours) achieves the best performance among learned (low storage) methods.
- NBE+SLD(E) outperforms SOTA DSAC* using similar network capacity.
- NBE+SLD (ours) outperforms Hloc_{1000} that uses 3x more landmarks.
Conclusion

• New learned camera localization method that predicts pre-determined scene landmarks in images.
• Leverages mature heatmap-based keypoint detection architectures.
• Low storage, privacy preserving, and high accuracy
• Code & Dataset: github.com/microsoft/SceneLandmarkLocalization
Learning to Detect Scene Landmarks for Camera Localization

Tien Do¹ Ondrej Miksik² Joseph DeGol² Hyun Soo Park¹ Sudipta N. Sinha²

¹University of Minnesota ²Microsoft

CVPR 2022