

Learning to Detect Scene Landmarks for Camera Localization

Tien Do1Ondrej Miksik2Joseph DeGol2Hyun Soo Park1Sudipta N. Sinha2

¹University of Minnesota ²Microsoft

CVPR 2022

Camera localization problem

Given a query image, compute the 3D position and 3D orientation of the camera within a precomputed 3D map of the scene.

Related work

- Vast literature
- Retrieval-based methods
 - Hierarchical Localization (Hloc)

Learning Feature Matching with Graph Neural Networks [Sarlin et al. 2020]

- Learned methods
 - Absolute pose regression (APR)
 PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization [Kendall et al. 2015]
 - Dense scene coordinate regression (SCR)

Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images [Shotton et al. 2013]

Visual Camera Re-Localization from RGB and RGB-D Images Using DSAC [Brachmann and Rother 2021]

Retrieval-based methods

- Accurate
- High storage requirements
- Not privacy preserving
 - Image can be reconstructed from stored feature descriptors

Revealing scenes by inverting structure from motion reconstructions. [Pittaluga et al. 2019]

stored points + features

res reconstructed image

original image

Learned methods (low storage)

Main Idea

- Designate a few scene landmarks (3D points).
- Learn a detector to localize those scene landmarks in a query image.
- Estimate camera pose from the 2D-3D scene landmark correspondences.

Learned methods (low storage)

Scene Landmark Detector (SLD) Model

- Output heatmap for each landmark
- Dilated convolution architecture
- Mean Sq. Error (MSE) pixel-wise loss
- Homography and intensity data augmentation

Example: training data

Neural Bearing Estimator (NBE)

- From image appearance, directly predict landmark bearing vector (3D)
- Can do it for visible as well as invisible landmarks

Indoor-6 Dataset

- Multiple captures (different day and time) of the same scene
- SfM reconstructions

scene1 (24 – 6289 – 799)

Test Images

Train Images

Results

- NBE+SLD (ours) achieves the best performance among learned (low storage) methods
- NBE+SLD(E) outperforms SOTA DSAC* using similar network capacity
- NBE+SLD (ours) outperforms Hloc₁₀₀₀ that uses 3x more landmarks

	Storage (MB)	scene1	scene2	scene3	scene4	scene5	scene6
PoseNet	12	0.0	0.0	0.0	0.0	0.0	0.0
DSAC*	27	18.7	12.3	19.7	44.9	10.6	44.3
NBE+SLD(E) ₃₀₀	29	28.4	26.1	43.5	48.9	37.5	44.6
NBE+SLD ₃₀₀	132	38.4	37.0	53.0	62.5	40.0	50.5

Recall (%) @ (5cm ,5°)

Conclusion

- New learned camera localization method that predicts pre-determined scene landmarks in images.
- Leverages mature heatmap-based keypoint detection architectures.
- Low storage, privacy preserving, and high accuracy
- Code & Dataset: <u>github.com/microsoft/SceneLandmarkLocalization</u>

Learning to Detect Scene Landmarks for Camera Localization

Tien Do1Ondrej Miksik2Joseph DeGol2Hyun Soo Park1Sudipta N. Sinha2

¹University of Minnesota ²Microsoft

CVPR 2022