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CMU-Walk CMU-Dance CMU-Run Total
Ours (Active) 0.26±0.03 0.22±0.04 0.44±0.04 0.31±0.10
Constant rot. (CW) 0.22±0.004 0.18±0.011 0.41±0.019 0.27±0.10
Constant rot. (CCW) 0.35±0.01 0.24±0.04 0.41±0.02 0.34±0.08

Table 1. Results of drone full flight simulation, as Table 2 of
our main document, reporting the error of constant rotation in both
directions. ”CW” and ”CCW” stand for ”clock-wise” and ”counter
clock-wise” respectively. In general, the active trajectory’s error
values are in between the error values of constant rotation in the
right and left directions.

1. Supplementary Video
The supplementary video provides a short overview of

our work and summarizes the methodology and results. It
includes video results of our active trajectories for both the
teleportation and simulated flight cases.

2. Drone Flight Simulation
We mention in Section 4.1 of our main document that we

obtain the constant rotation trajectory on simulated drone
flight, albeit with varying rotation direction. We report the
results of constant rotation in both directions in Table 1,
along with our active trajectory’s results. The results show
that in general, the active trajectory’s error values are in be-
tween the constant rotation to the right and the left. This is
because the active trajectory’s direction varies, however the
trajectory is equivalent to constant rotation.

3. The Drone Flight Model
As we mention in Section 3.3 of our main document, in

order to accurately predict where the drone will be posi-
tioned after passing it a goal velocity, we have formulated a
drone flight model.

Ablation Study. We replace our drone flight model with
uniform sampling around the drone. This is illustrated in
Figure 1. We evaluate the performance of our active deci-
sion making policy with the uniform sampling in Table 2.
The trajectories found using this sampling policy is shown
in Figure 2. We find that the algorithm cannot find the con-
stant rotation policy when we remove the drone flight model

a) Future positions w/o flight model b) Future positions with flight model

Figure 1. The predicted future positions of the drone (a) without
using our flight model and (b) using our flight model.

a) Active trajectories w/o 
flight model

b) Active trajectories using 
flight model

Figure 2. The trajectories drawn by our active decision making
policy (a) without using our flight model and (b) using our flight
model. We are able to find the well performing policy of constant
rotation when we are using more realistic sampling of future drone
positions, found using our drone flight model.

and in turn, performs worse.

CMU-Dribble CMU-Sitting CMU-Dinosour Total
Active with Flight Model 0.28±0.006 0.15±0.007 0.12±0.02 0.18±0.07
Active w/o Flight Model 0.65±0.09 0.48±0.09 0.22±0.07 0.45±0.18
Constant Rot. 0.28±0.006 0.14±0.002 0.17±0.02 0.20±0.06

Table 2. Ablation study on the importance of having a drone
flight model. We show 3D pose accuracy on simulated drone
flight using noisy ground truth for estimating M and L. We show
that we have a large improvement when we use our flight model
to predict the future locations of the drone. Using a flight model
allows us to find the same trajectories as constant rotation.



4. Results with Openpose and Liftnet
We evaluate our results on the toy example case, using

the networks of [2] and [4] to find the 2D pose detections
M and 3D relative pose detections L. The results are re-
ported in Table 3. We outperform the baselines significantly
for the real image dataset MPI-INF-3DHP. For the synthetic
images, somes we are outperformed by random, but its er-
ror has much higher standard deviation and the difference
between ours and random is within 1 standard deviation.

We outperform the baselines significantly in the real im-
age dataset as compared to the synthetic datasets because
the error of network [2] for real data is much lower than
for synthetic data. We verify this by comparing the nor-
malized 2D-pose estimation errors of a synthetic sequence
and a sequence taken from the MPI-INF-3DHP dataset. We
find that the normalized average error of [2] of the synthetic
sequence is 0.10 with 0.08 standard deviation, whereas the
normalized average error of the real image sequence is 0.06
with 0.06 standard deviation. Therefore, the unrealisti-
cally high noise of OpenPose on the synthetic data deprives
strong conclusions from the first three columns of Table 3.

Oracle still performs very well for synthetic images in
this case, but oracle makes decisions knowing the results of
[2] for all candidate locations. However, this is impossible
in practice due to the inherent uncertainty.

When the 2D pose detector is not unreliable, as in the
case of Table 1 of our main document, we outperform ran-
dom on all cases, well outside 2 standard deviations.

For the case of the MPI-INF-3DHP dataset, we remove
the 4 ceiling cameras for this set of experiments. Since the
networks of [2] and [4] were not trained with views from
such angles they give highly noisy results which would also
add noise to the values we report.

CMU-Walk CMU-Dance CMU-Run MPI-INF-3DHP. Total
Oracle 0.13±0 0.15±0 0.16±0.0005 0.17±0.0005 0.15±0.01
Ours (Active) 0.16±0.005 0.25±0.0009 0.25±0.002 0.21±0.0008 0.22±0.04
Random 0.17±0.004 0.24±0.01 0.24±0.005 0.28±0.03 0.23±0.04
Constant Rot. 0.20±0.002 0.28±0.02 0.28±0.001 0.29±0.007 0.26±0.04
Constant Angle 0.71±0.50 0.76±0.37 0.69±0.22 1.26±0.53 0.72±0.03

Table 3. 3D pose accuracy on toy experiment, using [5, 4] for es-
timating M and L. We outperform all predefined baseline trajec-
tories for the real image dataset, MPI-INF-3DHP. As for the cases
with synthetic input, we achieve comparable results with random,
albeit with much lower standard deviation.

5. Further Details About Simulation Environ-
ment

To test our algorithms we use the AirSim [3] drone simu-
lator, a plug-in built for the Unreal game engine. An image
from the simulator is shown in Figure 3.

AirSim provides a Python API which can be used to con-
trol the drone realistically, since it uses the same flight con-
trollers as used on actual drones. The position and orienta-

Figure 3. Image of the simulation environment, AirSim.

tion of the drone can be retrieved from the simulator accord-
ing to the world coordinate system, which takes the drone’s
starting point as the origin. The drone can be commanded
to move to a with a specified velocity for a specified dura-
tion. We have added functionalities to the simulator to con-
trol a human character, get ground truth information about
the character and animate it with motions from the CMU
Graphics Lab Motion Capture Database [1].

For experiments requiring teleportation we use the simu-
lator in ”ComputerVision” mode, whereas for experiments
simulating flight we use ”Multirotor” mode.
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