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Abstract

We address estimating dense correspondences between

two images depicting different but semantically related

scenes. End-to-end trainable deep neural networks incor-

porating neighborhood consensus cues are currently the

best methods for this task. However, these architectures re-

quire exhaustive matching and 4D convolutions over match-

ing costs for all pairs of feature map pixels. This makes

them computationally expensive. We present a more effi-

cient neighborhood consensus approach based on Patch-

Match. For higher accuracy, we propose to use a learned

local 4D scoring function for evaluating candidates during

the PatchMatch iterations. We have devised an approach

to jointly train the scoring function and the feature extrac-

tion modules by embedding them into a proxy model which

is end-to-end differentiable. The modules are trained in a

supervised setting using a cross-entropy loss to directly in-

corporate sparse keypoint supervision. Our evaluation on

PF-PASCAL and SPAIR-71K shows that our method sig-

nificantly outperforms the state-of-the-art on both datasets

while also being faster and using less memory.

1. Introduction

Computing pixel correspondence in two or more im-

ages is a fundamental step in computer vision tasks rang-

ing from 3D vision [1, 7, 13, 19, 43, 51] to image edit-

ing [21, 2, 3, 8, 12, 52] and scene understanding [11, 36,

33]. The problem variants where the images depict the same

scene (e.g., stereo, optical flow, and wide baseline match-

ing) are extensively studied and many methods already ex-

ist [39, 4, 14, 42, 44, 16]. We address the dense semantic

correspondence task [36, 28, 54, 22] where the two input

images depict common visual concepts. The goal is to find

corresponding pixels for semantically related object parts

or scene elements as shown in Figure 1. Large intra-class

appearance and shape variations make semantic correspon-

dence challenging, and it continues to receive much atten-

tion from the community [46, 58, 47, 49, 33, 34].

The top performing methods for computing semantic

Code available at http://github.com/leejaeyong7/PMNC
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Figure 1: The top row shows an image pair from PF-

PASCAL with ground truth keypoint annotations. The bot-

tom row shows transferred keypoints on the target im-

age computed using NC-Net [46], ANC-Net [34], and our

method (PMNC). Errors are shown using red lines connect-

ing the predicted orange keypoints to the expected green

keypoints. PMNC outperforms NC-Net and ANC-Net on

this example and produces state-of-the-art results on the

PF-PASCAL and SPAIR-71K datasets.

correspondences rely on neighborhood consensus, which

refers to a variety of techniques for filtering sparse feature

matches or dense pixel correspondence based on 2D spa-

tial context. While hand-crafted neighbourhood consensus

filters have long been in use [50, 6, 35], Rocco et al. pro-

posed NC-Net [49], the first trainable neighborhood consen-

sus neural network containing multiple 4D convolutional

layers for robust match filtering. ANC-Net [34] proposed

a similar model with adaptive non-isotropic 4D convolution

kernels. However, both methods sacrifice computational ef-

ficiency in favor of accuracy. The multiple 4D convolution

layers in these models cause high memory usage and high



running times during the forward pass.

We take a different approach to neighborhood consen-

sus inspired by PatchMatch [3]. We call our method Patch-

Match Neighborhood Consensus (PMNC). Similar to NC-

Net [49] and ANC-Net [34], PMNC uses a CNN feature

backbone and computes 4D correlations to compare all fea-

ture map pixel pairs in the two images. However, unlike

NC-Net and ANC-Net, PMNC does not filter the full 4D

correlation map using multiple 4D convolutional layers. In-

stead, it uses PatchMatch-based inference on the 4D cor-

relation map. Conventional PatchMatch cannot easily pro-

cess the 4D correlation tensors for neighborhood consen-

sus. Therefore, we propose a modified PatchMatch method,

where we introduce a learned scoring function for compar-

ing the similarity of patches in the two images. This scoring

function performs 4D convolution locally on the 4D correla-

tion map to produce a matching score. We invoke this func-

tion only at selective locations in the 4D map. The function

is used to compare a small number of propagation candi-

dates for each pixel during each PatchMatch iteration. In

practice, PMNC computes 4D convolutions on a fraction of

the full 4D search space which makes it more efficient.

Because PMNC is non-differentiable, it is difficult to

train the CNN backbone and the scoring function using

backpropagation. We overcome this by devising a differ-

entiable proxy model into which we embed our local scor-

ing function and feature backbone modules. While training

this proxy model, we invoke the scoring function densely in

the target image for a small number of 2D locations in the

source image (locations where ground truth keypoints are

available). The sparse ground truth keypoint positions in the

target image are relaxed to 2D probability maps (similar to

ANC-Net [34]). Then, the parameters of the feature back-

bone and the scoring function are jointly optimized to min-

imize the deviation between the predicted and ground truth

probability maps. With this training scheme, we achieve

state-of-the-art results on both the PF-PASCAL and SPAIR-

71K datasets while also being faster than the state-of-the-art

solutions and requiring less memory.

In summary, our contributions are (1) PMNC, a

novel PatchMatch-inspired method that avoids exhaustive

4D convolutions but still allows the benefits of learned

neighborhood consensus; (2) a simple approach to train

PMNC that uses a proxy model and sparse keypoint super-

vision to jointly train the neighborhood consensus function

and CNN feature modules; and (3) extensive experiments

with standard datasets against current dense semantic corre-

spondence benchmarks that show that our method achieves

the best accuracy more quickly with less memory.

2. Related Work

PatchMatch. PatchMatch [3] is a randomized algo-

rithm proposed to accelerate correspondence search in im-

age editing tasks while exploiting 2D spatial coherence

and smoothness inherent in image correspondence prob-

lems. It was later adopted for stereo matching [7], multi-

view stereo [20, 51], and optical flow estimation [59, 40].

Since then, a few notable extensions of PatchMatch have

been proposed. Hu et al. [25] incorporated a coarse-to-fine

matching strategy for handling larger displacements. Gal-

liani et al. [20] introduced parallelism in the propagation

step inspired by belief propagation. Duggal et al. [15] pro-

posed DeepPruner based on differentiable PatchMatch for

stereo matching. We propose an alternative to differentiable

PatchMatch and show its efficacy on semantic matching, a

task for which we were unable to train a DeepPruner model.

One key difference is that we use PatchMatch to improve

neighborhood consensus (NC) methods to avoid expensive

exhaustive 4D convolutions. We use PatchMatch only dur-

ing inference along with a learned function.

Semantic correspondence via optimization. In early

work on semantic correspondence estimation [36, 10, 9,

28, 26], handcrafted local features such as SIFT [39] and

HOG [11] were used for dense matching along with various

discrete optimization techniques. Cho et al. [10, 9] formu-

lated sparse semantic matching as graph matching. Liu et

al. [36] proposed SIFT Flow, generalizing optical flow to

dense semantic flow. Such methods were extended to deal

with large variations in scale [55] using deformable spa-

tial pyramids [28, 26]. Taniai et al. [54] proposed jointly

solving cosegmentation and semantic correspondence and

showed that solving both tasks together led to higher accu-

racy on both tasks. Ham et al. [22] studied using sparse

annotations for semantic flow estimation in Proposal Flow

and released two datasets (PF-PASCAL, PF-WILLOW) for

semantic correspondence. Kim et al. [30] used PatchMatch

in a similar way as us but do not incorporate learning. Liu

et al. [37] formulated semantic flow as an optimal transport

problem and reported excellent results on SPAIRS-71K.

Semantic correspondence via learning. Long et

al. [38] showed that CNN-based models trained for im-

age classification learned features that could compute corre-

spondence at finer image scales. Recently, learned methods

for semantic correspondence based on CNNs have become

popular [23, 29, 58, 41, 33]. Min et al. [41] also released

SPAIR-71K, a challenging dataset with 71K images for the

semantic correspondence task. Rocco et al. [46] proposed a

trainable CNN-based model with geometric matching con-

straints. Jeon et al. [27] proposed Guided Semantic Flow

(GSF) which extracts a sparse set of confident matches and

uses them to guide correspondence search in ambiguous im-

age regions. GSF and concurrent work ANC-Net [34] (see

later) are the two top methods on PF-PASCAL.

Filtering Matches via Neighborhood Consensus.

Neighborhood consensus matching was first explored for

sparse feature matching [61, 50] to check whether the set

of matches were locally spatially coherent in both images.
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Figure 2: Overview of inference phase. PMNC first computes the feature maps of the source and target images using a CNN-

based feature extractor. Then, it computes a 4D correlation map by computing the similarities (dot products) of all pairs of

source and target features. Next, PMNC computes an initial correspondence map from the correlation map by associating a

source pixel with the target pixel with the highest feature similarity. Then, PMNC iteratively refines the correspondence map

by running a sequence of PatchMatch propagation-and-update steps (see the sub-figure in the bottom right). PMNC returns

the refined correspondence map as the final output. PMNC avoids the use of exhaustive 4D convolutions over the correlation

map by using PatchMatch propagation-and-update steps. At each step, for a source pixel (i, j) (shown in grey), PMNC (1)

proposes candidates (x, y) in the target (shown in green); (2) evaluates each candidate using the scoring function F by

analyzing a 4D local correlation patch Aijxy; and (3) updates the correspondence with the best score.

Bilateral functions for modeling smooth image motion [35]

and an approach using grid motion statistics [5] are other

techniques for filtering matches using the same insight.

Rocco et al. [49] proposed a 4D convolution based neigh-

borhood consensus layer and end-to-end trainable model

called NC-Net. The 4D filtering of correlation maps can

better disambiguate local patches, but NC-Net is computa-

tionally expensive and limited to matching low resolution

images. Rocco et al. [48] recently proposed Sparse NC-Net

that uses fewer 4D convolutions by sparsely sampling the

4D correlation map. It uses K-nearest neighbors on dense

correlation tensors to find good match candidates and limits

4D filtering to those candidates. However, Sparse NC-Net

was specifically designed for wide-baseline matching and

was not evaluated for dense semantic correspondence.

ANC-Net is a recent extension of NC-Net proposed by

Li et al. [34] for semantic correspondence tasks. ANC-Net

consistently outperforms NC-Net on both PF-PASCAL and

SPAIRS-71K. The authors attribute this improvement to us-

ing self-similarity and adaptive window sizes in their neigh-

borhood consensus modules and to training their model in a

supervised setting. GSF and ANC-Net were published con-

currently and are the top two methods on both PF-PASCAL

and SPAIR-71K. We set the new state-of-the-art on both

datasets and outperform ANC-Net and GSF.

While our work is similar to ANC-Net because we in-

corporate neighborhood consensus and directly use sparse

keypoint supervision, there are a couple of notable differ-

ences. First, we use cross entropy loss to compare the pre-

dicted and ground truth 2D probability maps during train-

ing. In contrast, ANC-Net uses L2 loss to minimize a dif-

ferent measure of distributional difference. They add a sec-

ond loss to encourage one-to-one matching but we do not

use it. Second, our learned 4D scoring function is applied

multiple times in an iterative fashion at selective locations

in the 4D feature correlation map. However, ANC-Net ap-

plies the learned 4D filters on two 4D tensors, the first of

which is the same correlation map as ours but the second

one is computed by their self-similarity module.

3. PatchMatch Neighborhood Consensus

Figure 2 shows how PMNC computes the semantic cor-

respondences at inference time. First, PMNC calculates a

correlation map by exhaustively computing the similarities

between source and target images using their image-patch

feature descriptors. PMNC then greedily computes the ini-

tial correspondence map by composing it with the corre-

spondences with the largest similarity score via the argmax
operator. Lastly, PMNC runs a few PatchMatch [7] itera-

tions to refine and produce the final correspondence map.

3.1. Correlation Map and Correspondence Map

The first step is the computation of the correlation map

encoding all the similarities between the source and target

image patches. In Figures 2 and 3 (lower left box), we

illustrate how PMNC computes the correlation map. We

use a ResNet-101 [24] backbone as a feature extractor for

both inference and training. We denote the source image

as S and target image as T . Let fS ∈ R
H×W×d and

fT ∈ R
H×W×d denote the feature maps of the source and



Source Target

Compute 

Correla0on 

Map

Input

Dense 

Matching 

and Scoring

Compute Loss

𝑳(#𝑷𝒊𝒋, 𝑷𝒊𝒋)

(𝒊, 𝒋)

#𝑷𝒊𝒋 𝑷𝒊𝒋

Compute Matching Score

3.6𝑭

𝑨𝒊,𝒋,𝟏,𝟏

10.2

𝑨𝒊,𝒋,𝒙,𝒚

5.3

𝑨𝒊,𝒋,𝒘,𝒉

𝑭

𝑭

x,y

S
o

u
rc

e
Ta

rg
e

t

SoftMax

#𝑷𝒊𝒋

CNN

CNN

Dot 

Product

Source

Target

Feature Map

Feature Map

…
…

i, j

Figure 3: Overview of training phase. PMNC first computes the 4D correlation maps between the source and target images.

Then for a pair of annotated keypoints in the source and target images, the learned function F is used to predict the probability

of matching the source pixel to all the pixels in the target image. A 2D probability map is obtained by densely evaluating

all target pixel locations by first computing a matching score using F and then applying a 2D softmax operator (see bottom

right of figure). The parameters of F and the CNN are optimized by minimizing a cross entropy loss. The loss measures the

deviation between the predicted and the ground-truth probability maps. We assume that the ground truth probabilities follow

a 2D Gaussian distribution centered at the location of the annotated keypoint in the target image.

Layer Number of Filters Filter Size Output Size

Convolution 16 3× 3× 3× 3 5× 5× 5× 5

ReLU - - 5× 5× 5× 5

Convolution 16 3× 3× 3× 3 3× 3× 3× 3

ReLU - - 3× 3× 3× 3

Convolution 1 3× 3× 3× 3 1× 1× 1× 1

Table 1: Scoring function network architecture. The

function F takes a 4D patch Aijkl ∈ R
r×r×r×r and out-

puts a matching score. The table shows the details of the

underlying network architecture which consists of two lay-

ers of 4D convolutions along with ReLU operations.

target images, respectively. We compute a 4D dense corre-

lation map C ∈ R
H×W×H×W that contains all the pixel-

wise similarities Cijkl = 〈fS
ij , f

T
kl〉, where 〈·, ·〉 is the inner

product, and fS
ij ∈ R

d and fT
kl ∈ R

d are the feature vectors

with unit norm for the pixels (i, j) and (k, l) from the source

and target feature maps, respectively. Note that the descrip-

tor of a pixel in our feature maps describes an image patch.

We denote a local 4D patch of size r × r × r × r cropped

from the correlation map C at location (i, j, k, l), as Aijkl.

The next step computes the correspondence map from the

4D correlation map in a greedy fashion. Specifically, we

compute for every source feature in fS and find the feature

in fT that has the best similarity score. The results of this

step often contain incorrect matches but they serve as an

initialization for the proposed iterative refinement method.

3.2. PatchMatch Inference

We perform PatchMatch based optimization to itera-

tively refine the correspondence map D. The PatchMatch

algorithm [3] achieves this using three steps.

Initialization: With the correlation map that has a patch-

wise correlation value between source image and target im-

age, we construct the initial correspondence map D0 that

maps source pixels in fS into target pixels in fT based on

the maximum correlation value:

D0
ij = argmax

kl

(Cijkl) ∈ R
2. (1)

Note that the current dense correspondences are obtained

from pure pixel-wise correlations without neighborhood

consensus, and we let the correspondence map be refined

through the propagation and update steps.

Propagation: We follow the Red-Black PatchMatch

propagation method [20] for sampling candidate correspon-

dences. For each source pixel (i, j), we obtain a set of can-

didate correspondences Sk
ij , where

Sk
ij = {Dk

ij , D
k
i,j+1, D

k
i,j−1, . . .}, (2)

from the correspondence of adjacent pixels in the corre-

spondence map Dk at iteration k of PatchMatch. The adja-

cent pixels are chosen using the propagation kernel, which

defines the shape of the local neighborhood candidate.

Update: Given the set of propagation candidates Sk
ij ,

we evaluate each candidate correspondence with the scoring

function F , and update the correspondence map by taking

the correspondence value with the highest score. Mathe-

matically, this operation can be described as follows

Dk+1
ij = argmax

(

{F (Aij,(Dk
xy)

) | Dk
xy ∈ Sk

ij}
)

, (3)

where Aij,(Dk
xy)

is the 4D patch cropped from C associat-

ing the pixels (i, j) and Dk
xy . The bottom-right of Figure
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Figure 4: Qualitative results on PF-PASCAL. Top row shows source images and annotated keypoints. The rows below

show NC-Net, ANC-Net and PMNCbest results on the target image. We indicate the predicted locations and the GT locations

using orange and green dots respectively, and we connect them by red line segments to visualize the errors. The circles

correspond to the PCK threshold of α = 0.05. On these six examples, PMNCbest outperforms both NC-Net and ANC-Net.

2 illustrates this process. By using the trained patch scor-

ing function F , we evaluate the matching scores for each

propagation candidate in Sk
ij and update the current corre-

spondence value Dk
ij with the correspondence that yields

the highest score. We repeat the propagation and update

process until the correspondence map converges.

3.3. Scoring Function

A crucial component of the refinement process is a func-

tion F that predicts the correctness of a correspondence.

Unlike ANC-Net [34] and NC-Net [49] that use 4D con-

volutions over the whole correlation map C to refine and

compute the correspondences, we instead propose a scoring

function F that predicts the correctness of a correspondence

(i, j) ↔ (k, l) given a 4D patch Aijkl extracted from the

correlation map C. Different from the 4D convolutions over

the whole correlation map C, which are computationally

expensive and have large memory footprints, our proposed

4D patch-scoring function only applies 4D convolutions on

a selected 4D patch extracted from the correlation map. By

only using convolutions on a small 4D patch, PMNC re-

duces the computational complexity and memory footprint.

Our proposed scoring function F : R
r×r×r×r → R

maps a 4D patch of size r to a single value. This function F

is based on a neural network composed of 4D convolutions

and ReLU layers. Table 1 shows the architecture of F for a

4D patch of size r = 7. Section 3.4 describes how we learn

the parameters of F and the CNN-based feature extractor.

3.4. Training Phase

Our inference pipeline is not differentiable. Therefore,

we define a proxy problem to learn the parameters of F

and the CNN-based feature extractor. Figure 3 illustrates

the training procedure. Like ANC-Net [34], we use sparse

labeled keypoint matches for supervision. During training,

we first compute the correlation map C (Sec. 3.1). Then, for

each source keypoint annotation (i, j), PMNC evaluates all

the candidate target pixels (x, y) by predicting their match-

ing scores from their 4D-patches Aijxy using the scoring

function F . PMNC then computes a 2D matching score

map by arranging all the predicted scores following the

pixel ordering of the target image. Next, by applying a soft-

max operation over the 2D matching score map, PMNC ob-

tains a 2D probability map P̂ij over all the target pixels.

PMNC computes a 2D probability map P̂ij for each

source keypoint annotation (i, j) following the architecture

illustrated in Figure 3. This proxy architecture forces the

feature extractor and patch scoring function F to produce

meaningful results when we use PatchMatch as an alterna-

tive to the exhaustive matching algorithm.

To learn the parameters of the scoring function F and the

CNN-based feature extractor, we compute the ground truth



Method
α

Time(s) Memory(MB)

0.1 0.05 0.03 0.01

NCNet [49] 79.0 54.3 30.9 4.9 0.29 406

ANCNet [34] 85.9 58.1 31.9 5.1 0.33 1,310

GSF [27] 84.5 62.8 - - - -

PMNCfast 86.8 74.5 58.0 14.7 0.09 273

PMNCbest 90.6 82.4 71.6 29.1 0.96 2,610

Table 2: Evaluation on PF-PASCAL [22].

PMNCfast and PMNCbest are the two most accurate

methods in terms of PCK metrics for different α values.

PMNCfast is the fastest and most memory efficient,

whereas PMNCbest is the most accurate. The image

resolution was 400 × 400 pixels. First and second places

are indicated by bold blue and black respectively. The

NC-Net [49] and ANC-Net [34] results were obtained

using original code from the authors. The GSF [27] results

are taken from their paper.

2D probability map Pij of each source keypoint annotation

(i, j) using a Gaussian distribution centered at the ground

truth target correspondence (k, l) in fT , i.e.,

Pij = N ((k, l), σ) ∈ R
H×W , (4)

where σ is the standard deviation denoting uncertainty. In

our implementation we used σ = 0.6. Finally, because now

we have ground truth Pij and predicted probability maps

P̂ij , we use the cross entropy loss H(·) to compare the de-

viation of two probability distributions, i.e.,

L =
∑

ij

H(Pij , P̂ij). (5)

We minimize L over the parameters of the scoring function

F and the CNN feature extractor using backpropagation.

4. Experiments

We now report results on the PF-PASCAL [22] and

SPAIR-71K [41] datasets. We measure timings on a PC

with an Intel Core i9-7920X 2.9 Ghz CPU, 64 GB of DDR4

2666 Mhz RAM, and an NVidia RTX 2080TI GPU. We use

the Percent Correct Keypoint (PCK) metric [60] to measure

the precision of the sparse semantic correspondence with

variable threshold α. The smaller the α, the stricter the

measure. For PF-PASCAL, α is scaled by the larger image

dimension, and for SPAIR-71K, α is scaled by the larger

dimension of the object’s bounding box.

PMNCfast and PMNCbest denote two configurations of

our method. PMNCfast uses spatial resolution equivalent

to the fourth layer of ResNet-101, which resizes the origi-

nal image by 1
16 with r = 5. PMNCbest uses the third layer

of ResNet-101, which resizes the original image by 1
8 with

r = 7. For both configurations, we use 1546 feature map

# Iter. σ r

α

0.01 0.03 0.05 0.1

0 0.60 7× 7 15.2 60.8 77.9 89.4

1 0.60 7× 7 26.7 70.2 81.9 90.4

2 0.60 7× 7 29.1 71.0 82.4 90.6

3 0.60 7× 7 29.0 70.7 81.9 91.2

4 0.60 7× 7 29.4 71.0 82.1 91.1

2 0.15 7× 7 27.6 69.2 80.9 88.7

2 0.30 7× 7 31.4 70.3 80.1 88.4

2 0.45 7× 7 30.0 71.1 80.1 89.2

2 0.60 7× 7 29.1 71.0 82.4 90.6

2 0.75 7× 7 24.4 68.3 80.6 91.0

2 0.90 7× 7 20.0 62.7 78.4 90.3

2 0.60 3× 3 13.7 57.8 71.8 84.7

2 0.60 5× 5 29.7 70.4 80.4 89.1

2 0.60 7× 7 29.1 71.0 82.4 90.6

Table 3: Effect of PMNC parameters. We report PCK

metrics for various α thresholds, PatchMatch iteration

counts (# Iter.), σ values in the GT probability maps, and

patch sizes r used in 4D correlations. The top section shows

that most of the performance gain happens during the first

two iterations. The middle section shows that smaller σ val-

ues result in improvement for α ≤ 0.05. The lower section

shows that larger patches improve accuracy.

channels obtained by concatenating the third and fourth fea-

ture channels of ResNet-101. We use images at 400 × 400
pixel resolution, set σ = 0.6, and use two PatchMatch iter-

ations for all experiments except in the ablation study.

4.1. PFPascal

The PF-PASCAL [22] dataset contains 1,351 image pairs

selected from the PASCAL VOC [17] dataset, where the

ground truth keypoint matches were manually annotated.

The dataset is split into around 700, 300, and 300 pairs

for training, validation, and test, respectively. While NC-

Net [49] uses both source-to-target and target-to-source

pairs, we only use source-to-target pairs in our evaluation.

PMNC achieves the best PCK and timings. Table

2 shows the results on the PF-Pascal dataset. This Ta-

ble presents the PCK metric for α ∈ [0.01, 0.1], the

inference time in seconds, and memory requirements in

megabytes. We observe that at any precision threshold α,

PMNCbest outperforms all the baselines but requires longer

inference times and more memory. On the other hand,

PMNCfast still achieves better PCK compared to NC-Net,

ANC-Net and GSF, while requiring less time and memory.

Since the code for GSF is not available, we are unable to

report its timings and memory usage.

Cross entropy loss produces a significant benefit. To

understand which part of the method provides the gain over

the most similar baseline (ANC-Net), we analyzed the PCK

values for our method based on zero PatchMatch iterations.



Architecture aero bike bird boat bottle bus car cat chair cow dog horse moto person plant sheep train tv all

Pretrained

CNNGeo [46] 21.3 15.1 34.6 12.8 31.2 26.3 24.0 30.6 11.6 24.3 20.4 12.2 19.7 15.6 14.3 9.6 28.5 28.8 18.1

A2Net [53] 20.8 17.1 37.4 13.9 33.6 29.4 26.5 34.9 12.0 26.5 22.5 13.3 21.3 20.0 16.9 11.5 28.9 31.6 20.1

WeakAlign [47] 23.4 17.0 41.6 14.6 37.6 28.1 26.6 32.6 12.6 27.9 23.0 13.6 21.3 22.2 17.9 10.9 31.5 34.8 21.1

NC-Net [49] 24.0 16.0 45.0 13.7 35.7 25.9 19.0 50.4 14.3 32.6 27.4 19.2 21.7 20.3 20.4 13.6 33.6 40.4 26.4

ANC-Net [34] - - - - - - - - - - - - - - - - - - 28.7

GSF [27] - - - - - - - - - - - - - - - - - - 33.5

PMNCbest 24.6 19.3 57.3 16.9 37.0 21.4 14.7 54.3 17.4 37.6 37.0 25.4 18.7 28.2 21.0 19.1 29.9 32.6 28.8

Trained /

Fine-Tuned

CNNGeo [46] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6

A2Net [53] 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3

WeakAlign [47] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9

NC-Net [49] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1

HPF [41] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2

SFNet [33] 26.9 17.2 45.5 14.7 38.0 22.2 16.4 55.3 13.5 33.4 27.5 17.7 20.8 21.1 16.6 15.6 32.3 35.9 26.3

SCOT [37] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6

PMNCfast 49.5 31.6 67.1 29.8 40.2 52.0 39.0 65.2 16.2 67.9 50.4 40.3 41.4 42.9 30.2 31.1 60.4 53.8 44.7

PMNCbest 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 50.4

Table 4: PCK evaluation (α = 0.1) on SPAIR-71K per category using ResNet-101 [24] backbones. The rows marked

as “Pretrained” are for methods pretrained on PASCAL-VOC [17] and PF-PASCAL [22]; the “Trained / Fine Tuned” rows

are for those trained on SPAIR-71K. The best/second-best methods are marked in bold blue/black respectively. Amongst

“Pretrained” methods, PMNCbest is the second best method. This shows that the PMNC methods generalize better than other

baselines. For “Trained / Fine Tuned”, PMNCbest and PMNCfast have the highest and second highest accuracy. The results

for CNNGeo [46], A2Net [53], WeakAlign [47] NC-Net [49] and HPF [41] are from the HPF [41] paper. The ANC-Net [34],

GSF [27], SFNet [33] and SCOT [37] results are from the respective papers.

For α=0.01 and 0.1, the PCK values are 15.2 and 89.4 re-

spectively (see first row of the Table 3). The corresponding

values for ANC-Net are 5.1 and 85.9 (see Table 2). This is

a fair comparison as both methods were trained on the same

training data and annotations. We think the main reason for

the superior performance of our method (10.3% and 10.4%

gain in PCK) is due to our use of cross entropy loss whereas

ANC-Net uses a distance based loss.

Figure 4 shows qualitative results obtained on the PF-

Pascal dataset. The top row shows the source images, and

the rows below show the estimated keypoint correspon-

dences for NC-Net, ANC-Net, and PMNC. We visualize the

pixel correspondence error between the estimated and true

target locations with a red line and the tolerance α = 0.05
region with a green circle. We see that our method tends

to produce lower pixel correspondence errors since the red

lines are not visible. Moreover, most PMNC predictions

fall inside the green circles whereas the baselines tend to

produce higher errors and more red lines are visible.

A few PatchMatch iterations suffice. The top five rows

of Table 3 show the impact of running up to four Patch-

Match iterations. For α = 0.01, we see 11.5%, 13.9%, and

14.2% improvement in PCK after 1, 2, and 4 iterations re-

spectively. For α = 0.03 and α = 0.05, the best results,

an improvement of 16.9% and 5.5% respectively, were ob-

tained with two iterations. For α = 0.1, the best results

were obtained with three iterations, but the improvement

after two iterations was small. We attribute the convergence

after only a few iterations to our use of greedy matching for

PatchMatch initialization. It is known that better initializa-

tion can result in faster convergence in PatchMatch [40].

There is a positive correlation between σ and α. The

six middle rows of Table 3 show that using larger σ values

for generating the ground-truth probabilistic maps improves

performance when using larger α values. This is because

a larger σ relaxes the ground-truth probability map, which

corresponds to a larger PCK tolerance.

Larger patches improve performance. The bottom

three rows of Table 3 show that the larger the patch, the

better the performance across many performance thresholds

(i.e., α values). This is because the scoring function is using

more context. However, the larger the patch, the higher the

computational cost because of the 4D convolutions.

4.2. SPair71k

We also evaluate on SPAIR-71K [41] which has image

pairs with occlusions (unlike PF-PASCAL [22]) and larger

viewpoint and scale variations. It has 70,958 image pairs

with 53,340 for training, 5,384 for validation, and 12,234

for testing. We use the provided subsets in our experiments.

PMNCbest is the second best pre-trained model. Ta-

ble 4 shows results on all 18 object categories. The top sec-

tion reports performance when models are trained on PF-

PASCAL and tested on SPAIR-71K. PMNCbest performs

best on the most reported categories and has the second

highest PCK. This shows that our models trained on PF-

PASCAL generalize reasonably well to SPAIR-71K.

PMNCbest is the best fine-tuned model. The bot-



Methods
View-Point Scale Truncation Occlusion

All

Easy Med Hard Easy Med Hard None Src Tgt Both None Src Tgt Both

Pretrained

CNNGeo [46] 25.2 10.7 5.9 22.3 16.1 8.5 21.1 12.7 15.6 13.9 20.0 14.9 14.3 12.4 18.1

A2Net [53] 27.5 12.4 6.9 24.1 18.5 10.3 22.9 15.2 17.6 15.7 22.3 16.5 15.2 14.5 20.1

WeakAlign [47] 29.4 12.2 6.9 25.4 19.4 10.3 24.1 16.0 18.5 15.7 23.4 16.7 16.7 14.8 21.1

NC-Net [49] 34.0 18.6 12.8 31.7 23.8 14.2 29.1 22.9 23.4 21.0 29.0 21.1 21.8 19.6 26.4

ANC-Net [34] - - - - - - - - - - - - - - 28.7

GSF [27] 40.6 22.3 17.8 39.5 30.1 18.7 37.0 28.7 27.1 27.7 36.4 27.8 27.5 23.7 33.5

PMNCbest 34.6 22.7 18.2 32.6 27.0 19.5 31.0 28.0 24.2 23.5 32.0 24.1 21.8 17.4 28.8

Trained /

Fine-Tuned

CNNGeo[46] 28.8 12.0 6.4 24.8 18.7 10.6 23.7 15.5 17.9 15.3 22.9 16.1 16.4 14.4 20.6

A2Net [53] 30.9 13.3 7.4 26.1 21.1 12.4 25.0 17.4 20.5 17.6 24.6 18.6 17.2 16.4 22.3

WeakAlign [47] 29.3 11.9 7.0 25.1 19.1 11.0 24.0 15.8 18.4 15.6 23.3 16.1 16.4 15.7 20.9

NC-Net [49] 26.1 13.5 10.1 24.7 17.5 9.9 22.2 17.1 17.5 16.8 22.0 16.3 16.3 15.2 20.1

HPF[41] 35.6 20.3 15.5 33.0 26.1 15.8 31.0 24.6 24.0 23.7 30.8 23.5 22.8 21.8 28.2

SCOT [37] 42.7 28.0 23.9 41.1 33.7 21.4 39.0 32.4 30.0 30.0 39.0 30.3 28.1 26.0 35.6

PMNCfast 46.5 42.9 41.1 48.6 43.7 34.2 48.6 42.1 38.4 35.4 48.2 39.1 37.4 34.2 44.7

PMNCbest 53.3 47.4 45.9 53.7 49.6 41.5 54.3 46.8 45.0 41.9 54.2 43.9 43.0 38.4 50.4

Table 5: PCK evaluation (α = 0.1) on SPAIR-71K per nuisance (view point, scale, truncation, and occlusion). The

difficulty levels for view point and scale are labeled easy, medium, and hard. For truncation and occlusion, the difficultly

labels are none, source, target, and both. Rows are labeled in the same way as in Table 4. The “Pretrained” block shows

that PMNCbest has the second highest accuracy. However, the bottom block shows that when all the methods were trained,

PMNCbest and PMNCfast have the highest and second highest PCK accuracy per nuisance and difficulty level. The PCK

metrics for CNNGeo [46], A2Net [53], WeakAlign [47] NC-Net [49] and HPF [41] are from the HPF [41] paper. The

ANC-Net [34], GSF [27] and SCOT [37] PCK metrics are from the respective papers.
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Figure 5: SPAIR-71K results. Transferred keypoints shown on the target image obtained using PMNCbest. The color coding

scheme is the same as Figure 4. The provided 2D bounding boxes showing the object locations is not used by our method.

Our method computes accurate semantic correspondences despite having view-point, scale, and illumination changes.

tom section of Table 4 shows results for methods trained

on SPAIR-71K. We can see that PMNCbest has the high-

est PCK for 14/18 categories. PMNCfast ranks sec-

ond in 16/18 categories. Overall, we outperform exist-

ing works by a significant margin for all categories ex-

cept chair and bottle. We achieve the best overall PCK of

50.4 with PMNCbest. The next best method (excluding our

own PMNCfast is SCOT [37] at 35.6. Table 5 shows how

difficulty level affects PCK for each method. PMNCbest is

the best and PMNCfast is the second best method for all

the categories. Also our method’s performance margin over

baselines improves going from Easy to Hard.

5. Conclusion

We propose PMNC, a new approach to estimate dense

semantic correspondence between two images. We jointly

train the CNN-based feature extractor and neighborhood

consensus-based 4D scoring function using an end-to-end

differentiable model and sparse keypoint supervision. Dur-

ing inference, we refine the dense correspondence map us-

ing PatchMatch. PMNC clearly outperforms ANC-Net [34]

and GSF [27] on PF-PASCAL and SPAIR-71K and sets the

new state-of-the-art on both datasets.
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