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Abstract— In this paper, we propose a novel method to
recover the 3D trajectory of a moving person from a monocular
camera mounted on a quadrotor micro aerial vehicle (MAV).
The key contribution is an integrated approach that simultane-
ously performs visual odometry (VO) and persistent tracking of
a person automatically detected in the scene. All computation
pertaining to VO, detection and tracking runs onboard the
MAV from a front-facing monocular RGB camera. Given the
gravity direction from an inertial sensor and the knowledge of
the individual’s height, a complete 3D trajectory of the person
within the reconstructed scene can be estimated. When the
ground plane is detected from the triangulated 3D points, the
absolute metric scale of the trajectory and the 3D map is also
recovered. Our extensive indoor and outdoor experiments show
that the system can localize a person moving naturally within
a large area. The system runs at 17 frames per second on the
onboard computer. A walking person was successfully tracked
for two minutes and an accurate trajectory was recovered over
a distance of 140 meters with our system running onboard.

I. INTRODUCTION

Rapid growth in off-the-shelf micro aerial vehicle (MAV)
technology has created unprecedented interest in aerial pho-
tography and filming in recent years. Quadrotor MAVs with
gimballed cameras are being used for first-person view (FPV)
flying and photography by both professionals and amateurs to
record sports action footage from unique viewpoints that was
impossible a few years ago. However, safely manoeuvring a
quadrotor MAV to film a moving person is a challenging task.
Currently, this is done by a skilled radio control pilot trained
to navigate the MAV often by viewing FPV video from an
onboard camera streaming over a radio communication link.

Recently, various methods for user-friendly person-
following MAVs are being developed (e.g., Airdog, Hexo+,
3D Robotics IRIS). These systems rely on GPS, inertial
sensors on the person’s body to transmit the person’s location
to the MAV over a wireless link. However, such methods are
infeasible in GPS-denied environments (e.g., indoors) and
can be error prone. Furthermore, wearable accessories can
sometimes be an inconvenience to the person.

Autonomous navigation for MAVs using vision as the
primary sensor [1], [2] is currently an active area of re-
search which is building upon advances in visual odome-
try (VO) [3]–[6], visual SLAM [7], [8] and visual-inertial
navigation systems [9], [10] for monocular and stereo cam-
eras. These advances have led to significant progress to-
wards real-time onboard flight stabilization and control [11],
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(a) Close-up views (left: frame 600, right : frame 1100)

(b) Estimated trajectories and sparse 3D point cloud reconstruction

Fig. 1. Our system estimates the 3D trajectory of a moving person from a
monocular camera onboard a quadrotor MAV. This result is from the MFLY-
O9 sequence (1800 frames) captured from the MAV in flight. (a) Close-ups
of two selected frames. (b) Top view of the camera and person trajectories
(in red and black respectively) and 3D points obtained from visual odometry
(transition from blue to red indicates greater height above ground).

environment-mapping and obstacle avoidance [12] and on-
line 3D reconstruction [13]. However, tasks concerning the
automatic detection and 3D reconstruction of moving objects
in natural scenes and interaction between autonomous MAVs
and humans have not been extensively addressed so far.

Appearance-based object detection and tracking [14]–[16]
in video is a well studied problem in computer vision [17].
Progress in this area has led to applications in real-time
systems for autonomous driving [18] and visual servoing for
person-following on MAVs and UAVs [19], [20]. However,
the topic of estimating full 3D trajectories of targets tracked
from moving cameras is less explored. Existing methods
either require RGB-D sensors [21] or laser range finders [22]
which are suitable for autonomous vehicles [23] but not
quadrotor MAVs which have limited payload capacity.

In this paper, we present a pure vision-based technique
to localize a person in real-time from a monocular camera



onboard a quadrotor MAV (see Fig. 1). Our method does not
require sensors, artificial fiducial markers, color patches or
wearable devices on the person. Instead, the proposed system
uses a feature-based VO algorithm to recover the 6-DoF pose
of the camera and simultaneously performs appearance-based
tracking of a moving person. Using the estimated camera
poses, the 2D detections, the gravity direction from the
inertial sensor and the knowledge of the person’s height, the
full 3D trajectory of the person within the sparse 3D map is
estimated at true metric scale. Despite the general advantages
of the stereo approach, a monocular approach for VO and
tracking is more desirable for MAVs due to the smaller
payload and lower power budget. Moreover, compact (i.e.,
small baseline) stereo cameras are unlikely to be effective at
large depths in outdoor scenes.

Localizing a moving person from a moving monocular
camera has several challenges. First, feature-based VO can
suffer from scale drift due to fast camera motion, moving ob-
jects in the scene or the lack of stable features with sufficient
parallax. Detection and persistent tracking of moving objects
is also considerably more difficult in the monocular case as
only appearance cues must be used. Moreover, monocular
reconstruction of the 3D trajectory of a moving target is an
ill-posed problem. We show that the person’s trajectory can
be recovered from their 2D detections in every frame when
their height is known a priori. We propose a novel approach
that combines the complementary strengths of an existing
person detector trained using supervised learning [14], [24]
and an adaptive tracking algorithm [15] in order to persis-
tently track the person over long periods of time.

The main contribution of this paper is the novel sys-
tem for reconstructing a 3D trajectory of a moving person
from a moving camera. This involves integrating real-time
techniques for feature-based VO and extending tracking
algorithms for persistent tracking of a person in video. To
the best of our knowledge, this is the first work describing
such a system for a low-flying MAV that performs all vision
processing onboard from a front-facing monocular RGB
camera. Our indoor and outdoor experiments confirm that
the approach is robust and can accurately estimate long
trajectories of a person moving within a large scene.

II. RELATED WORK

Our visual odometry (VO) sub-system relies on recovering
the 6-DoF pose of the moving camera from vision and is
closely related to [3], [4] and feature-based visual SLAM [7].
More recently, direct methods for VO [5], [6] have been
proposed but the feature-based approach is more suited to our
setting since the feature tracks from VO can also be reused
for person tracking. Image-based localization from structure
from motion point clouds [25] as well as visual-inertial nav-
igation systems [9] have also been used for state estimation
on MAVs [26]. MAVs relying on onboard real-time vision-
based stabilization, control and navigation [1], [10]–[12] for
autonomous flight have also been demonstrated.

There is a long history of tracking-by-detection approaches
that have been developed for tracking pedestrians using

appearance-based features [14] and cascaded classifiers [24].
In parallel, there has been progress on algorithms for adaptive
tracking of arbitrary objects in video given an object tem-
plate. Struck [15] and TLD [16] are amongst the top perform-
ing algorithms on a popular tracking benchmark [17]. TLD
interleaves tracking, learning and detection tasks whereas
Struck incorporate margin-based online learning techniques
for higher robustness. However, most trackers do not address
the issue of recovering from failure. Combined tracking and
detection methods have been proposed for vehicle detection
for autonomous driving [18].

Joint SLAM and moving object tracking (SLAMMOT) has
been explored in the area of autonomous driving using range
sensors [22]. Closely related techniques have been developed
for detection and tracking of moving object (DATMO) [27]
that have been extended to stereo cameras [28]. Motion
segmentation provides additional cues to detect moving
objects. In [23], joint monocular VO and tracking was used
to reconstruct moving cars in the scene.

Reliably detecting and tracking objects using appearance
has been applied to persistant target localization from small
UAVs [20], [29], [30]. However, these methods either involve
UAVs at high altitude or require downward-facing cameras,
whereas our work focuses on the situation involving quadro-
tor MAVs with a front-facing camera flying a few meters
above the ground which is more challenging.

Visual Servoing is the most common approach for target-
following. Efficient onboard approaches for person-following
have been proposed using TLD on an ARDrone [19]. How-
ever, flight manoeuvres may be limited in such systems due
to lack of enough information about the 3D target location.
In contrast, our technique estimates the full 6-DoF pose
estimate of the MAV as well as the 3D position of the target.
This can be used to plan more complex manoeuvres in real-
time and gives more flexibility for recording aerial video.

III. VISUAL ODOMETRY

In this section, we describe our monocular feature-based
visual odometry approach. Although, similar to existing
methods [3], [4], [7], [8], the specific algorithms for feature
tracking, relative pose estimation, keyframe selection and
bundle adjustment differ from common VO methods espe-
cially in the way the individual components are combined.
Recently, semi-direct and dense methods for VO have been
proposed [5], [6]. However, feature-based VO is more suited
for our task for two reasons. First, the feature tracks are
reused for person tracking. Second, the computational burden
of simultaneous VO and tracking in our system leads to
frame-rates that vary between 15–20Hz. This produces large
inter-frame motion which is not suitable for direct methods.

A. Keypoint detection and tracking

The first step in our feature-based VO approach involves
detecting features and tracking them in consecutive frames.
Keypoints are extracted using a Harris corner detector on
every frame. Given a feature budget of 2000 features, can-
didates are selected in decreasing order of cornerness scores



and grid-based heuristics are also used to ensure a good
spatial distribution of features in the image. Each keypoint
is described by a 256-bit BRIEF descriptor [31]. On our
platform, these binary descriptors can be compared very
efficiently since Hamming distances between binary strings
can be computed using popcnt, a dedicated CPU instruction.

On the first frame, all features are added into the active
feature table. On the next frame, each active feature is
compared to feature candidates that lie within a k × k pixel
region around the active feature’s location in the previous
frame. We set k = 64 pixels. Given the typical frame-
rate of our system, this search range is wide enough to
handle large interframe 2D motion caused by fast camera
movement. A coarse grid is used as a search index to speed
up the 2D range search. Next, for each active feature, two
nearest neighbors are computed in descriptor space and the
Hamming distance ratio of the best to the second-best match
is computed. The motion vectors corresponding to match
candidates with a ratio smaller than 0.8 are accumulated
into a 2D motion histogram. This 2D histogram image is
morphologically filtered to remove spurious peaks and holes
and thresholded to obtain a 2D motion bitmap.

Next, in a second pass, each potential match candidate
for each active feature is tested again. If the corresponding
motion vector maps to a non-empty bin in the 2D motion
histogram, the candidate is selected provided it also passes a
mutual consistency check [3]. The active features for which
valid matches are found in this way, remain active and
their tracks are updated with the new feature location and
descriptor while the rest are invalidated. Finally, whenever a
new keyframe is selected, the unmatched keypoint candidates
in that frame are added as active features to the track table.

The idea of preemptively filtering outliers using 2D motion
histograms in our work differs from RANSAC-based outlier
removal used in [3], [7], [8], [25]. Feature tracking in our
approach is completely independent of geometric motion
estimation. This has two advantages. First, a significant
amount of outliers are removed very efficiently. Second,
feature matches on moving objects are retained and later
reused in our system when tracking the moving person.
In contrast, these matches would have been removed by
RANSAC-based methods along with the random outliers.

B. Camera motion estimation

Next, we describe our camera ego-motion estimation algo-
rithm. After the initialization step, it alternates between two
states. In the first state, there is a single reference keyframe
and associated 3D points. The camera pose for the current
frame is estimated from those 3D points using a standard
camera resection method. Occasionally, the system enters
the second state where the current frame becomes a new
keyframe and the camera pair for the current and previous
keyframes are optimized along with the triangulated 3D
points. After this the system returns to the first state.

Initialization and Model Selection. In our method, the
first frame automatically becomes a keyframe with canonical

pose. For each subsequent frame, the camera pose rela-
tive to the first keyframe is computed after retrieving the
respective two-view matches from the track table. The 5-
point algorithm [32] is used with RANSAC to estimate the
essential matrix. Let IE denote the set of epipolar inliers.
A homography is then robustly fitted to those inliers. The
inliers to the homography are denoted by IH . Next, a model
selection score S = 100(|IE | − |IH |)/|IE | + ln(|IE |) is
computed. When the number of epipolar inliner is small,
the first term dominates whereas when the number of inliers
is larger (e.g. 500+), then the second ln term boosts the score
even when the first term is small (i.e. the numerator is small).
When S exceeds a threshold TS (= 55), we proceed with
the initial 3D reconstruction. A full bundle adjustment (BA)
over the two views is then performed, producing an initial
reconstruction of the two cameras and triangulated 3D points
in a metric coordinate frame where the camera baseline is
scaled to unit length. The current frame is then turned into
the new reference keyframe.

If the active feature count falls below a threshold (= 500)
before the initial reconstruction succeeds, a new keyframe
is created. In that case, the camera motion relative to the
previous keyframe is considered a pure rotation and no 3D
points are initialized. Our system continues to remain in the
bootstrapping stage until the model selection test succeeds.

Absolute camera pose estimation. After the system is
bootstrapped and a reference keyframe with 3D points is
available, the camera pose for the next few frames is obtained
using standard camera resectioning. First, 2D–3D matches
are retrieved by querying the track table with the feature-ids
of the 3D points in the reference keyframe. Next, the 3-point
algorithm is used within a RANSAC framework to estimate
the camera’s pose. Finally, the pose parameters are refined
in a final nonlinear optimization step.

Keyframe selection and scale propagation. Feature
tracking and pose estimation continues as described above
until either the number of 2D–3D match inliers falls below
a minimum count (=25) or the inter-camera distance between
the current and reference keyframe exceeds a threshold
(=1.0). In both cases, a new keyframe is added. Then,
bundle adjustment is performed on the current and previous
keyframes, followed by the model selection test described
above. If the test is successful, the relative scale between
the 3D points common between the previous keyframe and
the new set of 3D points is estimated. This is done using
a 1D RANSAC to estimate the scale factor for which the
pixel reprojection error of the transformed old 3D points in
the current frame is minimized. Using image measurements
reduces the effect of depth uncertainty in the triangulated
3D points. Using the recovered scale, the new 3D points
and camera are transformed into the coordinate frame of the
previous keyframe using the estimated similarity transform.
The current frame is then turned into the reference keyframe.

System reset. We build resilience to failure using an ap-
proach similar to the firewall strategy discussed in [3]. Dur-
ing scale propagation, the scale estimate can be inaccurate



when enough common 3D points between the previous and
current keyframe are not present. We ensure that the inlier-
count and the inlier percentage are both above acceptable
thresholds and that the estimated scale factor is within an
acceptable range (0.02 – 50). When scale propagation fails,
the system resets and starts bootstrapping from scratch. After
this reset, the new 3D points have an arbitrary scale and this
can cause drift. However, in practice the reset occurs quickly
enough that the depth distribution in the scene before and
after the reset are similar. In such cases, the model selection
test during initialization provides a weak normalization and
that prevents large scale drift.

Recovering Absolute Scale. A monocular system cannot
recover the true scale of the camera trajectory. Since the
camera is calibrated, by assuming that the person with known
height is in an upright position, a 2D person detection in the
image can be used to recover the true camera height above
the ground plane (see section V for details). We also estimate
the ground plane from the triangulated 3D points. Using the
known gravity vector g, the ground plane is detected by
building a histogram of the 1D projections of the 3D points
along g and finding the bin that received the most votes.
Since it is safe to assume that the camera is higher than
the ground plane, we only use the 3D points lower than the
camera center during this step. When both the ground plane
and the person is detected, the VO coordinate frame can be
rescaled to the true dimensions. Currently, we only perform
this scaling during the VO initialization step and after the
system resets. However, incorporating these constraints into a
global bundle adjustment during an optional post-processing
step could improve the accuracy of the estimated trajectories.

IV. TRACKING THE PERSON

Persistent tracking over long duration from a moving MAV
has several challenges – the scale of the target in the image or
the scene illumination may change drastically, for example,
when the person walks from a sunlit to a shaded area. Our
system also needs to be robust to occlusions, pose defor-
mations and large inter-frame motion caused by fast camera
or subject movement. We tested two existing alternatives –
tracking-by-detection and adaptive tracking, neither of which
alone could meet the accuracy and runtime requirements in
our experiments. Next, we describe our hybrid approach that
combines the strengths of the two approaches and further
optimizations that helped to reduce the running time.

Person Detector. For detecting a person independently in
each frame we use multiscale channel features [14] and a
boosted object detection method. The weak classifiers are
4096 two-level decision trees. Adaboost is used for super-
vised learning on the CalTech Pedestrian benchmark [33].
Cascade classifier are commonly used in fast object de-
tectors. We use the soft cascade variant [24] that allows
a tradeoff between accuracy and speed. Instead of using
multiple cascade layers, a threshold is used after evaluating
each decision tree and unpromising patches are rejected early
after evaluating a small number of trees.

Fig. 2. Our system is robust and continues to track the same person even
when other individuals appear in the scene. Results on selected frames from
the WALK-O2 and MFLY-O8 sequences are shown.

Adaptive Tracking. Unlike detectors that require offline
supervised learning on labeled data, adaptive trackers [15],
[16] can track arbitrary objects using online learning on
a small number of training examples. Struck [15] and
TLD [16] are two such algorithms with excellent perfor-
mance on tracking benchmarks [17]. However, it is worth
noting that most of their test sequences are short and
recorded from static cameras. We used the Struck tracker
in our pipeline but another adaptive tracking method could
also have been used. In Struck, 2D translational tracking
is posed as a structured output prediction problem. Unlike
prior template tracking methods, it incorporates background
appearance and updates a discriminative model during online
learning which gives it higher robustness. It also uses a
budgeting scheme to maintain a small number of support
vectors crucial for good runtime performance. However,
Struck and other adaptive trackers requires good initialization
and re-initialization, often obtained from object detection.

Our Hybrid Approach. Due to its ability to recover
from failure, tracking-by-detection is often better for systems
that need long duration tracking. However, running detection
independently on every frame gives noisy results with jitter
in 2D position and scale. To address this, we use dynamic
programming commonly used in 1D sequence labeling tasks.

Let {bti} denote multiple detection hypotheses in frame
t and U(bti) be the cost of selecting the i-th hypothesis in
the t-th frame. Let V (bti, b

t+1
j ) be the cost of selecting the

i-th and j-th hypotheses in frames t and t + 1. Dynamic
programming (DP) efficiently finds the optimal labeling L∗
that minimizes the energy function E(L) defined as follows.

E(L) =
N∑
t=1

U(bti) +
N∑
t=1

V (bti, b
t+1
j ) (1)

V (b, b′) = λ1V1(b, b
′) + λ2V2(b, b

′) + λ3V3(b, b
′) (2)

where selecting hypotheses b and b′ in consecutive frames
incurs different pairwise costs: V1(b, b′) = 1− b∩b′

b∪b′ penalizes
b and b′ with low overlap, V2 penalizes distances between
their centers whereas V3 penalizes a difference in their sizes.
λ1, λ2 and λ3 are weights that are chosen empirically. Our
system runs online by caching intermediate results computed
on the previous frame, the solution for the current frame is
obtained recursively from the cached results.

Our DP-based detection approach suppresses false posi-
tives but fails to address the issue of false negatives. For
instance, our detector often had low recall when the person
was farther away or when the camera was tilted sideways.
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Fig. 3. (Left) Camera roll induces a tilt which can be corrected to calculate
pu and pv the head and foot pixels in the image. This assumes that the
person is in an upright position. (Right) The known gravity direction (g)
and the person height L allows the Dv to be computed in closed form.

To address this issue, we developed a heuristic that lets
our system temporarily switch to adaptive tracking (using
Struck) when the total number of detection hypotheses falls
below a threshold. This threshold is chosen conservatively
to ensure that Struck is initialized with a good detection
result. Setting the threshold too low increases the risk that
the last detection is inaccurate preventing the Struck tracker
from being initialized with an accurate template. While the
adaptive tracking is enabled, we continue to speculatively run
the detector on every frame. When the number of detection
hypotheses increases above the threshold, we again enable
the detector after disabling the Struck tracker.

Optimizations. We propose three optimizations to im-
prove runtime performance. First, when detection is enabled,
we use the previous detection’s bounding box b to predict a
smaller region by enlarging b by a factor of two and run the
detector on this region in the current frame rather than in the
whole frame. This produces a 3× speedup on average.

Although the detector mostly runs on cropped regions,
after a failure, it needs to be run on the whole frame. Our sec-
ond optimization involves scheduling this computation over
successive frames. Rather than processing the whole frame at
once, we schedule the detection over four overlapping image
bands 200 × 480 pixels each, and cycle through them on four
consecutive frames. Typically in these situations, the system
has adaptive tracking enabled and detection is only being run
in speculative mode. Therefore, a little delay in obtaining a
good detection does not hurt the system’s accuracy.

Finally, frames where bundle adjustment is performed can
be bottlenecks in our system. To reduce the latency, we avoid
running our hybrid person tracker on these frames. Instead,
we predict the detection in the current frame based on the
detection in the previous frame and the mean translation
vector computed from the tracked keypoints that lie within
the person bounding box. This is possible because our
keypoint tracking approach can recover short but accurate
keypoint tracks even on non-rigid objects. This optimization
does require that the previous frame had a valid detection
and the tracked keypoints within the person bounding box
exceeds a minimum count (= 20).

Fig. 4. Our Quadrotor MAV platform with additional payload – an USB
camera and a dual-core single board computer for onboard processing.
Separate camera on a gimbal can record high resolution video.

V. PERSON TRAJECTORY RECONSTRUCTION
We propose a simple closed form method to estimate the

distance from the camera C at an unknown height above
the ground to the person’s foot by assuming the person is
upright and that the person’s height L, the camera intrinsics
and the gravity vector g are known. As shown in Fig. 3, let
u and v denote the backprojected rays corresponding to pu
and pv , the roll-corrected head and foot pixels in the image
respectively and let Du and Dv denote the distances from the
camera C to the person’s head H and foot F respectively.
Using the law of cosines on 4CHF in Fig. 3, we get

L2 = D2
u +D2

v + 2DuDvcos(α). (3)

Since the camera is calibrated and g is known, angles α and
θ are both known. From basic trigonometry, we can obtain
a related between Du and Dv as follows.

Ducos(α) + Lcos(θ) = Dv (4)

Substituting Du from (4) into (3) gives a quadratic equa-
tion in Dv which has two real roots but only one that is
positive. The negative root is simply discarded.

The final trajectory is estimated by an extended Kalman
filter (EKF). The state vector of the EKF consists of 3D
position and velocity of the camera and the person’s foot.
The input measurements to the EKF are the estimated camera
position from VO, the normalized image coordinates of the
person’s foot and estimated value of Dv . Details are provided
in the supplementary material [34].

VI. SYSTEM AND IMPLEMENTATION
For our experiments, we use a custom built quadrotor

MAV shown in Fig. 4. Our system is implemented in C++
and runs on the single board computer equipped with a
Core i7-4500U CPU (1.8 Ghz dual-core), 16GB RAM and a
240GB mSATA SSD drive. The board runs 64-bit Windows
8.1, weighs 183 grams without the protective case and runs
on a 12V power source. A global shutter color camera with a
wide-angle lens (2.1mm focal length) is mounted front-facing
on the MAV and connected via USB to the computer. The
maximum framerate is 30Hz at a resolution of 640 × 480
pixels. The camera intrinsics were calculated offline using
the omnidirectional camera calibration toolbox [35].



Name F V (m/sec.) Succ (%) Ttrack (msec.) Ttotal (msec.)

WALK-O1 1400 3.7± 1.6 85.4 25± 10 63± 9
WALK-O2 1590 3.6± 0.9 92.8 18± 14 55± 16
WALK-O3 2205 5.3± 2.3 93.1 17± 12 60± 14
WALK-I4 1180 2.6± 0.9 82.4 21± 7 56± 9
WALK-I5 650 6.8± 4.0 86.6 31± 18 69± 18
MFLY-O6 1160 0.9± 0.4 73.9 12± 5 46± 10
MFLY-O7 1200 1.7± 0.9 98.5 19± 18 56± 17
MFLY-O8 1370 2.2± 0.9 96.1 16± 12 56± 15
MFLY-O9 1800 2.1± 0.5 82.2 24 ± 21 59± 22
ONBRD1 816 5.4± 1.6 – 26± 11 68± 11
ONBRD2 2110 3.5± 1.2 – 18± 8 57± 12

TABLE I
#FRAMES (F ), PERSON’S ESTIMATED VELOCITY (V ), OUR

TRACKER’S SUCCESS-RATE (Succ), PER-FRAME TIMINGS FOR

TRACKING ONLY (Ttrack) AND PER-FRAME TIMINGS (Ttotal).

VII. EXPERIMENTS

We first performed an independent evaluation of our VO
and tracking algorithms focusing on robustness and runtime
performance and then evaluated the system end-to-end on
nine sequences acquired onboard the MAV. Finally, we tested
our real-time system onboard the flying MAV in two different
sessions. Selected results are described in the paper. The
complete set of results can be seen on the website [34].

Datasets. The nine sequences used for offline evaluation
are denoted WALK-[o1–o3], WALK-[i4, i5] and MFLY-[o6–
o9] in the paper. The letters {o,i} indicate scene-type (out-
doors vs. indoors). The WALK sequences were acquired from
a hand-held quadrotor carried around to simulate person-
following, whereas the MFLY sequences were captured from
the quadrotor in flight. The image resolution is 640 × 480
pixels and synchronized attitude readings are obtained from
an onboard IMU. These sequences were manually annotated
to obtain the ground truth person detections in every frame
and can be found on the project website [34].

Qualitative Results. The average framerate of our system
is 17 frames per second. Table I summarizes timings on
individual sequences and reports our tracker’s success rate,
i.e. the percentage of frames where the 2D detections had
an overlap error less than 0.5. Fig. 6 and 7 show results
on the WALK-o1 and WALK-i4 sequences. Here, the MAV
was carried hand-held 1.5–2 meters above the ground while
following the person at close range. In WALK-O1 the camera
follows behind the person walking on a steady path whereas
in WALK-I4, the person changes direction frequently and is
observed in the camera from many different directions. Fig. 1
shows results on the MFLY-o9 sequence where the MAV flies
1–4 meters above the ground causing higher variance in the
size of the person in the image.

A. Evaluation of Visual Odometry

We compared our VO system with the authors’ implemen-
tation of SVO [6] on one of their 30 fps sequences with small
inter-frame camera motion1. The result from SVO and our

1the airground rig s3 2013-03-18-21-38-48 sequence (4872 frames)

(a) (b) (c)
Fig. 5. (a) Camera path estimated by SVO [6]. (b) by our method on all
4872 frames. (c) The result of our method when every 8-th input frame is
used. SVO failed to compute a valid camera pose after 832 frame.

Fig. 6. Results on WALK-o1 (1400 frames): [Top row] Feature tracks
on a selected frame with large inter-frame camera rotation. Top view
of reconstructed camera and person trajectories (shown in red and black
respectively). Here, the person returns to the starting location. The trajectory
recovered by our open-loop VO system shows fairly low drift in this case.

system are comparable as shown in Fig. 5(a) and Fig. 5(b)
respectively. Next, we simulated larger camera motion by
skipping frames and selecting every 8-th frame of this
sequence. This time SVO failed to update the camera pose
after 832 frame while our system processed the complete
input and generated a result (Fig. 5(c)) visually similar to
the original result (Fig. 5(b)). The robustness of our VO
system was tested on all nine offline sequences where it
produced visually accurate camera trajectories. For example
in the WALK-o1 sequence, the person returns approximately
to the same location he started from. Fig. 6 shows the low
drift in our result despite the long trajectory (87 meters).

B. Evaluation of Tracking and Detection

To evaluate the tracking performance, we used the standard
overlap error metric [17], O = 1 − b ∩ bgt

b ∪ bgt
, where b and

bgt denote the detected and the ground truth rectangles
respectively. We compare our method with the detector [14],
[24] and Struck [15] (initialized using the detector) running at
full and half image resolution. Fig. 8(a) shows the cumulative
histogram of the overlap errors for the four methods on
the MFLY-o9 sequence. The percentage of detections with



Fig. 7. Results on (WALK-i4) (1180 frames): [Top] Selected frame and
close-up view of the trajectory in a large indoor scene. [Bottom] Top view
of camera and person trajectories (in red and black respectively).

error less than 0.5 was 88% for the detector, 80% for our
method and much lower for Struck. Fig. 8(c) compares
the cumulative histograms of the tracking only per-frame
timings. The percentage of frames where timing was less
than 40 msec. was 100% for Struck, 70% for our method
and 20% for the detector. Thus, our method achieves a good
tradeoff between speed and accuracy. Using thresholds for
error = 0.5 and timing = 40 msec., the error and timing
metrics for all nine datasets are summarized in Fig. 8(b)
and Fig. 8(d). Our method is the most accurate on four out
of the nine sequences whereas the baseline detector is the
most accurate method on the other five (our method is a
close second). However, the baseline detector is consistently
very slow. While Struck is the fastest, it fails catastrophically
on four of the sequences. In summary, our hybrid approach
achieves the best compromise between speed and accuracy.

C. Onboard system evaluation

Finally, we tested our system running onboard our fly-
ing quadrotor MAV during two outdoor flight sessions –
ONBOARD-1,2 lasting approximately one and two minutes
respectively. The average framerate during these sessions
was 15 and 17 frames per second respectively. Fig. 9 shows
results from the ONBOARD-2 experiment where the person
walked a distance of 140 meters. The estimated trajectories
and 3d reconstruction are logged onboard and visualized later
on. Fig. 9(a) and 9(b) shows close-ups and Fig. 9(c) shows
the top-view of the trajectories and the reconstruction. The
supplementary video shows our system in action. During
this experiment, the person also carried an accurate INS
device (GPS1) and an ordinary GPS logger recording at
1Hz (GPS2). We treat the GPS1 track as ground truth. We
globally aligned the GPS2 track and our estimated person

trajectory to GPS1 in a least square sense. The mean 2D
Euclidean distance error for GPS2 and our system was 2.57
± 1.87 meters and 3.60 ± 3.22 respectively.

VIII. CONCLUSIONS

We have presented a system for estimating the trajectory
of a moving person from a monocular camera onboard a
low-flying quadrotor MAV. We perform VO and persistent
person tracking by building on top of existing algorithms
in both areas. The system runs at 17 frames per second on
an onboard computer that consumes low power. Extensive
evaluation on long sequences in indoor and outdoor scenes
demonstrates that the system is robust and effective.

However, our system has some limitations. Our tracking
approach currently requires the detector to succeed on a
majority of frames. It can be inaccurate if the person is
difficult to recognize depending on his pose. Like all VO
system, ours assumes that the background scene is mostly
static and dynamic scenes with water cannot be handled.

As future work, building a controller that uses the real-time
camera and person position estimates from our method will
enable autonomous navigation and person-following quadro-
tor MAV in both indoor and outdoor scenes. We expect that
the trajectories obtained using our proposed method can be
exploited for real-time path planning and will make it more
flexible to spatially position and control aerial cameras for
recording interesting action footage.
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Fig. 8. Quantitative evaluation for tracking: (a) Cumulative histogram plot of overlap error for the four methods (DET: Tracking-by-detection STR1:
Struck on full resolution image, STR2: Struck on half resolution image) on the MFLY-o9 sequence. (b) The percentage of frames where tracking was
successful (the overlap error was less than 0.5) shown for the four methods. (c) A similar cumulative histogram plot for tracking-only per-frame timings
for MFLY-o9. (d) The percentage of frames where tracking took less than 40 msec. shown for the four methods.

(a) (b) (c) (d)
Fig. 9. ONBOARD EXPERIMENT: (a,b) Two selected frames from the camera on gimbal and close-up views of the trajectories and reconstruction. The
camera and person trajectories are shown in red and black respectively. (c) Top view of the full reconstruction and trajectories. The black squares correspond
to the areas shown in the close-up views. (d) GPS tracks from an accurate INS (GPS1) and an off-the-shelf consumer-grade GPS tracker (GPS2).
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