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Abstract. This paper discusses the iso-disparity surfaces for general stereo con-
figurations. These are the surfaces that are observed at the same resolution along
the epipolar lines in both images of a stereo pair. For stereo algorithms that in-
clude smoothness terms either implicitly through area-based correlation or ex-
plicitly by using penalty terms for neighboring pixels with dissimilar disparities
these surfaces also represent the implicit hypothesis made during stereo match-
ing. Although the shape of these surfaces is well known for the standard stereo
case (i.e. fronto-parallel planes), surprisingly enough for two cameras in a gen-
eral configuration to our knowledge their shape has not been studied. This is,
however, very important since it represents the discretisation of stereo sampling
in 3D space and represents absolute bounds on performance independent of later
resampling. We prove that the intersections of these surfaces with an epipolar
plane consists of a family of conics with three fixed points. There is an interest-
ing relation to the human horopter and we show that for stereo the retinas act
as if they were flat. Further we discuss the relevance of iso-disparity surfaces to
image-pair rectification and active vision. In experiments we show how one can
configure an active stereo head to align iso-disparity surfaces to scene structures
of interest such as a vertical wall, allowing better and faster stereo results.

1 Introduction

In stereo matching pixels of one images are compared with pixels of another image to
identify corresponding pixels. The accuracy at which this can be done is limited by the
resolution of the images. Since the matching ambiguity is limited to the epipolar lines,
it is the resolution along the epipolar lines that is relevant. Therefore, we argue that iso-
disparity surfaces (where disparities are defined along the epipolar line) characterize
the uncertainty and discretization in stereo reconstruction. While the geometry of these
surfaces is very well known and understood in the standard stereo case (i.e. fronto-
parallel planes located at distances inversely proportional to the disparity), only very
little is known for general stereo configurations. However, as we will see later, the shape
of these curves –and therefore what is achievable by stereo– depends dramatically on
the geometric configuration (and the internal cameras settings). It is also important to be
aware that image pair rectification can only affect negatively (or at best keep unchanged)
the intrinsic uncertainty of the stereo reconstruction for a certain configuration.

In addition, many stereo algorithms make assumptions about the scene that are re-
lated to the iso-disparity surfaces. Although many different approaches have been pro-
posed to compute dense stereo correspondences (we refer the readers to [22] for a recent
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review), most of these algorithms share common properties. Many algorithms evaluate
potential matches by comparing pixels within a support region located around the points
of interest. This pixel-by-pixel comparison of the region makes an implicit assumption
about the 3D geometry of the observed surface. In fact, in this case the stereo algorithm
“sweeps” over the iso-disparity surfaces. These correspond to the shape hypothesis be-
ing considered by the stereo algorithm.

Besides this, many stereo algorithm perform an optimization over the epipolar line
or over the whole image where not only the matching cost is minimized, but also the
surface smoothness is taken into account. This allows to reduce problems with ambigu-
ous matches. Often, a cost term of the form ‖∇d‖2 is used where d is the disparity
(along the epipolar line) and ∇ represents the gradient operator. A similar term can also
be used for computing dense disparity maps using optical flow [3]. This results in a
bias towards 3D surfaces for which ‖∇d‖ = 0. In other words, we can conclude that
in addition to characterize the uncertainty iso-disparity surfaces represent the implicit
assumptions made by many stereo algorithms.

In Section 2 and 3 we will discuss the geometry of the iso-disparity surfaces. In Sec-
tion 4 related work is discussed. In Section 5 the relevance to the human visual system is
discussed and in Section 6 the impact on image-pair rectification is discussed. Section 7
discusses the application to active vision and the paper is concluded in Section 8.

2 The standard stereo case

Before analysing general stereo configurations, we will review the standard stereo case.
The standard stereo configuration consists of two identical cameras with a relative dis-
placement being a pure translation along the cameras’ x-axes. In this configuration the
the same scanlines from both images are corresponding epipolar lines. Therefore the
stereo search can be limited to corresponding horizontal scanlines.

In this case the implicit stereo surfaces take on a particularly simple form. For a 3D
point (X, Y, Z) and two cameras in the standard stereo configuration with focal length
f and baseline b (and with the image plane aligned with the XY-plane), the observed
disparity is

d = −fb

Z
. (1)

Therefore in this case the implicit stereo surfaces are fronto-parallel planes. This is a
well-known result. An example is shown in Figure 1. The synthetic cameras are 20 cm
apart, have parallel optical axis and a virtual image size and focal length of 1000 pixels
(roughly equivalent to 35mm lense or 53 degrees field-of-view). To avoid clutter only
one in ten iso-disparity curves is plotted and a dot is placed for one in ten pixels on
those curves. The same camera and baseline are also used further in the paper.

3 The general case

Because the ambiguity caused by an unknown depth is limited to image displacements
along the epipolar lines we define disparities in those terms. First we define a coordinate
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Fig. 1. Implicit stereo surfaces for the standard setup.

λ on the epipolar line where λ(m) = |m − e| − l0 where e is the epipole and with
l0 = min |m−e| over all image points m. Note that λ is bound to [0,

√
w2 + h2] (with w

and h being the image width and height respectively). Now the disparity can be defined
as d = λ′(m′) − ξλ(m) with ξ ∈ {−1, 1} a term that takes into account a possible
different orientation of the epipolar lines (see [13] for more details on this issue) 1. A
similar disparity measure was for example proposed in [3] 2. Note that this is different
from the typical definition where disparities would be defined directly in difference of
image coordinates, leading to both horizontal and vertical disparities, e.g. [23]. In the
case where epipolar lines are horizontal both measures coincide.

Given the nature of the problem it is most relevant to start with the analysis of the
shape of the iso-disparity curves wihtin epipolar planes. Let us call such a curve φ.
Let us also define the point M∞ as the point that is imaged at infinity in both images,
i.e. the point that is on the intersection of both planes parallel with the image planes
and passing through the centers of projection (and the considered epipolar plane). The
following theorem can be proven:

Theorem 1. The iso-disparity curves φ are conics that pass through both centers of
projection and the point M∞.

Proof: Consider two centers of projection C1 and C2 and the intersections I1 and I2
of an epipolar plane with the two image planes (see Figure 2). Take four image points
m0, m1, mi, mj with coordinates 0, 1, i, j along the line and the point at infinity m∞ on
the epipolar line I1 and similarly m′0, m

′
1, m

′
i, m

′
j and m′∞ on the corresponding epipolar

1 ξ should be chosen so that the visible part of the iso-disparity surface is observed from the same
side by both cameras, e.g. ξ = −1 for verging cameras where the epipoles are on different
sides of the image.

2 Note that the definition proposed in [3] has the undesirable implictly assumption that corre-
sponding epipolar lines have similar orientations.
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Fig. 2. Illustration of theorem

line I2. Let us name the corresponding 3D points M0, M1, Mi, Mj and M∞ respectively.
Observe that the cross-ratio

{M0C1, M1C1; MiC1, M∞C1} = {m0, m1; mi, m∞}

is equal to
{M0C2, M1C2; MiC2, M∞C2} = {m′0, m′1; m′i, m′∞} .

Therefore, according to Chasles’ theorem [7] both centers of projection C 1 and C2 are
on the same conic. The same analysis can be made when replacing M i by Mj and since
both conics share five common points M0, M1, M∞, C1 and C2 they are equal. Note that
since the cross-ratio is invariant to translation the proof is also valid for m ′

0, m
′
1, m

′
i, m

′
j

having coordinates d, d + 1, d + i and d + j respectively. �

Note that with 3 fixed points, i.e. M∞, C1, C2, there is a two degree family of possible
conics left. One of the degrees of freedom corresponds to the actual disparity value that
is considered, the other degree of freedom corresponds to the ratio of focal lengths for
both images (i.e. the size of pixels).

It is also interesting to extend the analysis of the iso-disparity curves out of the
epipolar plane. Let us for example consider all the image points with equal λ. By defini-
tion these form a circle with the epipole as center (and radius l 0+λ). The corresponding
points for a disparity d are located on a circle3 with center e′ and radius l′0 + ξλ + d. In
general this type of iso-disparity curves will therefore be the intersection of two elliptic
cones. Such a cone would be circular when the baseline is orthogonal to the image plane

3 Depending on ξ it might be necessary to consider two separate half-circles. The separating
line would be a line through the epipole and parallel with the other image plane. This is again
related to the orientation of the epipolar lines [13].



and would become a plane when the baseline is parallel with the image plane. Note that
–if we would desire to do so– the intersection of two cones is relatively simple to com-
pute [14]. Since in our case the vertex of each cone is comprised within the other cone,
a single connected intersection is obtained. If the epipoles are far from the images, the
radii of the circles passing through the images are large and therefore the iso-disparity
surfaces would have low curvatures (at least in the direction out of the epipolar planes).
Some specific cases will be discussed further.

4 Related work

The special case for d = 0 is very much related with the concept of the horopter [1].
This curve is the locus of all 3D points that have identical image projections in both
images of a stereo pair. Note that this is different from our definition of disparities
since we are concerned with distance along the epipolar lines, but it can (partially)
coincide in a number of cases. For the typical case of two cameras fixating a point, the
horopter corresponds to an iso-disparity surface at least for the part contained within
the horizontal plane. This part of the horopter is an ellipse similar to the one shown in
Figure 2. In this case the vertical part of the horopter is a vertical line in the bisecting
plane.

In fact, computer vision researchers have already used the concept of the horopter
–or iso-disparity surfaces– in the context of stereo matching. Burt et al. [6] proposed
to warp the images so that the horopter would better correspond to the expected scene
content. By shifting scanlines the horopter of the standard stereo setup was transformed
from the plane at infinity to the ground plane which is very useful in the context of robot
navigation. We will show in Section 7 how this can also be achieved for a vertical wall
by reconfiguring the camera. Others have also studied the possible use of the horopter
in stereo vision, especially in the context of active stereo heads with verging [18] and
torsion [12] degrees of freedom, or with asymmetrically skewed stereo cameras [8]. We
will explore this possibility more in detail in the Section 7.

In [23] Völpel and Theimer also discuss iso-disparity loci and their relation to the
reconstruction uncertainties in area-based stereo. However, instead of considering dis-
parities along the epipolar lines, they consider independent disparities along the x- and
y-direction. While our analysis is relevant to stereo algorithms that search for matches
along epipolar lines, theirs is relevant to algorithms that look for corresponding pix-
els with similar coordinates without considering epipolar geometry. It is important to
notice that this is fundamentally different and that both analyses only overlap when cor-
responding epipolar lines are aligned with corresponding image scanlines, i.e. for the
standard stereo configuration and for a single scanline for some other stereo configura-
tions. The analysis given in [23] is only meaningfull for stereo configurations that do
not deviate to much from the standard stereo case.

5 Human Vision

The horopter has also been the subject of a lot of study in the area of human vision.
Under the assumption that the retina is spherical and that corresponding points are



spread symmetrically around the fovea, the horopter becomes a circle known as the
Vieth-Müller circle [17]. It has, however, been observed that the empirical horopter
deviates from the theoretical horopter by what is known as the Hering-Hillebrand de-
viations [11]. The empirical horopter is always flatter than the Vieth-Müller circle. It
is concave towards the viewer for close distances, becomes flat at a specific distance
know as the abathical distance and then becomes convex. Ogle [16] proposed to model
the empirical horopter using a conic section.

Using the concepts discussed earlier in this paper some interesting observations can
be made. Since the horopter is flat at the abathical distance, the eye (at least along the
eye’s equator) can be modeled as a camera with a planar retina with the plane offset
by an angle corresponding to the vergence required to fixate a point at the abathical
distance. In other words, the retinas acts as if they were flat! As far as we could tell,
this seems to be a new result [11]. Given a typical abathical distance of 1m and an
interoccular distance of 6.5cm, the normal of the plane would deviate 1.86 degrees out-
wards from the visual axis. In this case Theorem 1 allows us to predict the shape of the
horopter for any gaze direction and distance under the assumption that corresponding
optical directions remain in correspondence (which is only an approximation given ac-
comodation and other effects). If our eyes fixate a point straight in front of us, the 3
fixed points of Theorem 1, the fixation point and the need for symmetry are sufficient
to determine uniquely the shape of the horizontal horopter. For excentric fixation, it can
easily be shown that in the point of fixation the horopter should be tangent to the Vieth-
Müller circle, i.e. the circle through both nodal points and the fixation point (given that
the resolution of both fovea are the same), which in addition to the 4 known points also
completely determines the shape of the horopter. This is illustrated with a few examples
in Fig. 3.
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Fig. 3. Human horopter, as predicted by Theorem 1 (assuming an abathical distance of 1m and
fixed corresponding points) for fixation at 75, 100 and 125cm (left) and for fixation at 125cm with
0, 15 and 30 degrees excentricity (middle). Simplified model of left eye with respect to stereo.



6 Rectification

To apply a stereo algorithm to a stereo pair that was not recorded using the standard
stereo geometry, it is necessary to warp the images to make corresponding epipolar
lines coincide with the scan-lines. This process is called image-pair rectification. In the
past many different approaches have been proposed [4, 10, 15, 19, 9, 21, 20]. All these
approaches somehow try to minimize distortions. Most of the approaches are homog-
raphy based. For such approaches the epipole has to be warped to infinity to achieve
parallel epipolar lines. In this case the resulting iso-disparity surfaces correspond to a
set of planes, as in the standard stereo case or as the case with zoom discussed in Sec-
tion 7.2. Clearly, when the original iso-disparity surfaces where far from planar, this
type of rectification is bound to cause large distortions, at least for some parts of the
images and of the iso-disparity surfaces.

Some recent approaches have abandoned the limitations imposed by homographies
and have resorted to more general warping functions [21, 20]. Both approaches preserve
distances along epipolar lines. Therefore, these approaches preserve the iso-disparity
surfaces. A disadvantage is that these rectification approaches are computationally more
expensive and do not preserve lines. Note, however, that nowadays arbitrary warping
functions can efficiently be performed on graphics hardware using texturing function-
ality.

By using an iso-disparity preserving rectification and a stereo algorithm that com-
putes integer disparity values, the reconstructed points will have to be located on a finite
set of surfaces corresponding to the iso-disparity surfaces for integer disparities. Ideally,
one would expect every scene point to be projected on the closest iso-disparity surface
by the stereo reconstruction. In Figure 4 a point reconstruction is shown that was ob-
tained using a rectification approach that preserves distances along epipolar lines. The
reconstruction was obtained from the two castle images shown at the top of the figure
using a stereo algorithm without subpixel matching. Note the clearly visible elliptic
patterns in the top view of the reconstruction. Our second example consists of a for-
ward moving camera. In this case it can be verified that the iso-disparity surfaces are
predicted to be surfaces of revolution around the optical axis with parabola passing
through both centers of projection as generators. This example is illustrated in Fig.5.
The reconstruction was obtained from the two beguinage images shown on the left. The
observed structures correspond to the prediction, i.e. the intersection of the 3D scene
with the iso-disparity surfaces. While one can of course use an algorithm with subpixel
precision, this doesn’t change the fact that the depth precision of a stereo algorithm at
a certain location will be proportional to the distance between the iso-disparity curves
and that the algorithm will perform better if its priors (i.e. constant disparity) is aligned
with the geometry of the observed scene.

7 Active vision

It has been established long ago [5, 2] that vision systems that would adapt themselve
to the task at hand and/or to the observed environment can perform much better. The
insights developed in this paper coupled with rectification algorithms that preserved the



Fig. 4. Illustration of isodisparity surfaces for sideways motion (with some convergence). Image
pair from the castle sequence (left) and 3D point reconstruction (right).

disparities can be very useful to provide the most optimal configuration for an active
stereo head. Below we discuss the case of a verging stereo head and the case of a
stereo head where the zoom of both cameras can be modified indepentently. Note that
as mentioned earlier on todays hardware the expensive step for advanced rectification
approaches is not the image warping anymore (since this can easily be achieved in
real-time on graphics hardware), but the computation of the warping function. For an
active vision scenario, one could compute the warping function once for many frames
by keeping the configuration fixed for a number of consecutive frames, or, alternatively,
precompute the warping function for a number of preset camera configurations. Those
camera configurations would be matched to solve specific tasks, such as reconstruct-
left-wall, reconstruct-right-wall, reconstruct-object-in-front, etc.

7.1 Vergence

Here we consider a typical active stereo head with verging capabilities. We study a
synthetic configuration similar to the one shown in Figure 1, i.e we use the same virtual
camera (width, height and focal length equal to 1000 pixels) and baseline (20cm). It
is interesting to observe how small variations of the vergence angle cause important
changes for the iso-disparity surfaces. In Figure 6 iso-disparity curves are plotted for
the plane containing both optical axes with vergence going from 10 degrees divergent



0

200

400

600

800

1000

1200

−600−400−2000200400600

Fig. 5. Iso-disparity surfaces for forward motion. Top view of theoretical iso-disparity curves
(upper-left). Notice that as expected reconstruction uncertainty is very large close to the direction
of motion. Image pair from the beguinage sequence (lower-left) and different views of the 3D
point reconstruction (middle/right). The images on the right are taken at different locations along
the optical axis of the cameras.

to 15 degrees convergent. It seems that divergent setups are better suited for observing
objects (as the iso-disparity contours would more closely follow the expected object
surface), convergent setups are better for exploring an environment. Note for example
how some iso-disparity curves would be nicely aligned with a 2m wide corridor in
the 10o convergent case. A possible limitation for divergent configurations is the more
limited overlap. However, as can be seen in this figure, for cameras with a field of view
53 degrees, a stereo field of view of 33 resp. 43 degrees is obtained for 5 and 10 degrees
divergence. Note also that, by shifting the CCD in the camera similarly to the optical
keystone found in many projectors, it would be possible to obtain a much larger overlap
for divergent configurations.

7.2 Zooming

For active stereo zooming can also be used to change the shape of the iso-disparity
surfaces depending on the task at hand. If the camera are kept parallel the iso-disparity
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Fig. 6. Iso-disparity curves for different vergences, i.e. -5, 5 and 10 degrees for each camera (units
are in cm).

surfaces remain a bundle of planes, but not fronto-parallel anymore. In Figure 7 a few
examples are shown. Note how well zoomed in/out configurations are suited to recon-
struct or follow a wall. In Figure 8 two stereo pairs are given recorded using a pair of
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Fig. 7. Iso-disparity curves for different focal lengths (and parallel optical axis). The focal length
of the left camera is 1000 and for the right camera 800, 1000 and 1200 (units are in cm).

pan-tilt-zoom cameras. The stereo pair is interlaced into a single image so that the dis-
parities can be verified visually. The disparity images were computed using a standard
stereo algorithm. The first stereo pair corresponds to the standard fronto-parallel stereo
setup. The second stereo pair corresponds to the case shown on the left of Figure 7.
One can clearly notice how for the second case the whole left wall fits within a very
small disparity range. This benefits both the efficiency of the algorithm (less disparities
to search) and the quality of the results (assumptions for area-based stereo are better
met). Note that the same effect could be achieved by distording standard stereo images
along epipolar lines, but in this case this would imply a loss of information or efficiency
(to the contrary of the groundplane rectification case [6] where one could shift epipolar
lines with respect to each other). More in general, this paper makes it possible for a
robot equipped with a pair of pan-tilt-zoom cameras that explores an environment to



actively control its cameras to ’focus in’ on areas of interest. This should be understood
in the stereo sense, meaning bringing the structure of interest within a small disparity
range. Note that small changes in intrinsics and/or orientation will not affect much the

Fig. 8. Stereo pair (interlaced to form single image) and corresponding disparity map for fronto-
parallel case (top) and right-camera zoomed-out case (bottom, see Fig. 7, left).

depth discretisation of a particular stereo configuration. However, as we have shown
it can have a great impact on the shape of the iso-disparity curves or in other words
determine if the assumptions made by the stereo algorithm will be satisfied or not.

8 Summary and Conclusions

In this paper we have derived the shape of iso-disparity surfaces for general camera
configuration. It was shown that the intersection of these implicit surfaces with epipo-
lar planes have a particularly simple form. Comparing this with the empirical human
horopter, we could conclude that the retinas act as if they were flat. This, as far as we
were able to verify, is a new result and might lead to interesting further research in the
area of human vision. The main goal of this paper was to provide more insight in the
iso-disparity geometry for general camera configurations. We have discussed and illus-
trated the impact on rectification and advocate the use of disparity preserving rectifica-
tion. Finally, we have shown how the insights developed in this paper can be exploited
to ’focus’ an active stereo head on a part of the scene. This allows to bring structures of
interest within a small disparity range by controlling vergence and zooming, and thus
allows to achieve better reconstruction of those structures faster.
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