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Abstract

We present a new approach for recognizing the make
and model of a car from a single image. While most pre-
vious methods are restricted to fixed or limited viewpoints,
our system is able to verify a car’s make and model from
an arbitrary view. Our model consists of 3D space curves
obtained by backprojecting image curves onto silhouette-
based visual hulls and then refining them using three-view
curve matching. These 3D curves are then matched to 2D
image curves using a 3D view-based alignment technique.
We present two different methods for estimating the pose of
a car, which we then use to initialize the 3D curve matching.
Our approach is able to verify the exact make and model of
a car over a wide range of viewpoints in cluttered scenes.

1. Introduction
Recognizing the exact make, model, and year of a car

from an arbitrary viewpoint is something that car aficiona-
dos do with relative ease. To date, however, no computer
vision system can mimic this ability over a wide range of
viewpoints. Why is this so?

At first glance, car recognition should be readily solv-
able, since it is an example of instance recognition, where
we can build or obtain high-quality 3D models or large
numbers of reference images. However, cars are more chal-
lenging than many other man-made objects, since they have
large untextured regions and their appearance is often dom-
inated by highlight lines and environmental reflections. The
question we address is therefore: is car recognition an eas-
ily solvable example of fine-grained subordinate category
recognition [6, 7] or an extremely challenging vision prob-
lem due to the complexity and variability in appearance?

To date, most of the work in recognizing the exact make
and model of a car involves only a single viewpoint or lim-
ited viewpoint change [24, 4, 23]. In parallel, work on
general object category detection and recognition is start-
ing to simultaneously recognize the rough pose of the ob-
ject [30, 28, 21, 17, 8]. Our paper aims to unify these two
approaches, by developing a system than can handle an arbi-

Figure 1. Steps in constructing our 3D car model for a 2011 Honda
Civic Sedan: (top) three of the images used to generate the visual
hull; (middle) the visual hull; (bottom) 3D space curves projected
onto the visual hull.

trary viewpoint while also determining the exact make and
model of a vehicle. While our main focus is on the verifica-
tion stage, i.e., determining the exact model given a rough
initial pose estimate for the car, we also present two differ-
ent pose estimation (automatic initialization) methods, one
that is an extension of a previous technique [31] and one we
develop in this paper.

In the following, we describe our processing pipeline
and matching algorithms for solving this problem. We be-
gin with a review of related work in this field. We follow
this with an overview of the problem and justify our choice
of view-based 3D curve models as the basic representation
used in our system. We then describe the steps for automatic
reconstruction of these 3D curve models from training im-
ages (Sections 3.2 and 3.3). We then show how our models
can be rigidly aligned to novel test images using oriented
3D chamfer matching to perform simultaneous pose and
make/model recognition (Section 4). Section 5 describes
how we combine our chamfer matching scores to perform
classification using logistic regression. Section 6 describes
two different techniques for estimating the initial pose of
the car, which enables the system to be fully automatic, al-
beit at a reduced performance rate. Finally, we present our
experimental results on eight different car models and close
with a discussion of our results and ideas for future work.



2. Previous work

3D object recognition is a fundamental problem in com-
puter vision, with a long history dating back to the late
1960s. Hoiem and Savarese [9] present a nice survey on
this topic and a comprehensive list of the large number of
papers published in this area.

Some of the early techniques were based on the concept
of 3D alignment between 3D curve models and 2D image
edges [12]. However, these techniques fell out of favor,
since they required strong curvilinear features and were re-
placed by view-based techniques which used interest point
or region detectors and descriptors [30, 28].

Work in detecting cars, often from fixed viewpoints such
as side views, has been evolving in parallel [25] and has
become, along with detecting people, bicycles, and other
objects, a central component of the PASCAL VOC (Visual
Object Category) challenge [5].

More recently, researchers have started to combine ob-
ject detection with pose estimation. For example, Ozuysal
et al. [21] use an initial bounding box of a car to select a
view-specific classifier to refine the hypothesis, while Glas-
ner et al. [8] vote for potential pose parameters and then
refine these using view-specific SVMs. Li et al. [17] learn
the appearance of features located at key points (wheels,
corners) of a car and use an elastic shape model to detect
both the location and pose of cars in street images.

While most of these techniques are based on traditional
feature detectors and descriptors, a parallel line of work
uses contour-based recognition and pose estimation. Shot-
ton et al. [26] use a star-shaped model of object contours
and introduce oriented chamfer matching, where the orien-
tations of the edges are taken into account when measuring
their correspondence distance. (More recent work on ori-
ented chamfer matching includes [18].) Lu et al. [20] ex-
tract edgels and link them to form contours, which are then
grouped into part bundles and matched using shape con-
text similarity [1]. Leotta and Mundy [15] build a 3D de-
formable vehicle model and show good edge-based fitting
results on images. Most recently, Payet and Todorovic [22]
use view-based shape templates and a bag of boundaries
representation placed on a deformable 2D grid and show
good results on boundary detection and pose estimation.

To date, most of the work on recognizing specific car
models has been limited to fixed viewpoints, e.g., front or
rear views of cars [4, 23]. A notable exception is the recent
paper of Jang and Turk [13], which uses SURF features and
a quantized bag of words approach to recognize toy model
cars shot against a uniform background. Our work extends
the domain of applicability to cluttered real-world scenes
with strong reflections and demonstrates that curve-based
recognition can be more accurate than existing methods.

3. 3D Curve Models
In our technique, each car model is represented by a set

of non-parametric 3D curves. We reconstruct these curves
from natural images rather than from CAD models, since
image-based modeling approaches generate 3D curves that
are more likely to match 2D curves detected in test images
taken “in the wild”. In this section, we present our approach
for reconstructing these 3D curve models and matching
these models to new test images.

Instead of using a single global 3D model, we use a view-
based representation consisting of separate view-dependent
partial 3D curve models, where each model is associated
with the viewpoint corresponding to each of the training
images. In order to align the 3D curve model to a new test
image, we find the closest training image and then align
the corresponding partial 3D curve model to the edges in
the test image by estimating a rigid 3D perspective image
transformation. This has the advantage that subtle view-
dependent features can be modeled, and the visibility of the
curves is handled naturally.

Curve matching could be performed using pure 2D align-
ment and chamfer matching [26, 18]. However, even with
non-rigid alignment techniques such as Active Shape Mod-
els (ASMs) [3, 16], the large variation in the curve rendered
from an arbitrary camera viewpoint make it difficult to si-
multaneously recover a good registration between the 3D
model and the test image while still discerning the subtle
shape differences that differentiate one car model from an-
other (Section 7). Since Active Shape Models will in gen-
eral not reflect the true 3D transformation of a rigid 3D car
model, a better approach is to directly use a 3D model.

3.1. Formulation

We represent the 3D curves in each view of the 3D car
model by a set of NM 3D point samples Pi. The goal of
alignment (Section 4) is to recover the unknown camera
pose or viewing transformation M = K[R|t] of the 3D
model that minimizes the sum of reprojection errors be-
tween the NM projected 3D model points and their corre-
sponding nearest 2D edge points or edgels, amongst theNT

edgels in the test image denoted as {pk}. The optimal trans-
formation M∗ is the one that minimizes

Dc =
1

NM

NM∑
i=1

min
k
d(pk,PMPi), (1)

where d(p, q) is one of the 2D distance metrics discussed in
Section 4. The operator P projects 3D points into the test
image, and the minimum distance over the edgels {pk} can
be efficiently computed using a distance transform [11].1

1This is often called chamfer matching since the distance transform
resembles the chamfers used as guides in manufacturing processes.



The most common method for obtaining 3D shape from
calibrated images is to first recover pixel correspondences
across images captured from multiple viewpoints and then
perform multi-view triangulation. However, for curves,
directly computing reliable pixel-to-pixel correspondence
from adjacent images is a challenging problem. For this
reason, we first build a visual hull model (Section 3.2), and
then use this geometry as the initial basis for our 3D curve
locations, which we then further refine using robust three-
view stereo matching (Section 3.3).

3.2. Visual Hull Reconstruction

Our input data consists of multiple turntable images of
each car model taken at regular angular intervals against a
clean background (Figure 1). Such images are often avail-
able on manufacturers’ web sites, and in a production sys-
tem, would be captured with carefully calibrated cameras.
Since in our case we did not have access to the intrinsic
camera parameters, we automatically detect the ellipses cor-
responding to the wheels (Section 6.2) in the subset of im-
ages where these could be reliably detected and use the van-
ishing points defined by the ellipse bitangents to estimate
both the focal length and optic center of each camera in a
sequence.

For each calibrated sequence, we obtain our initial 3D
curves by backprojecting the 2D image curves onto an
automatically generated visual hull reconstruction of the
car [14]. We extract binary silhouettes from each input im-
age using thresholding followed by appropriate morpholog-
ical operations. Next, we build a volumetric 3D model by
intersecting the backprojected silhouette cones in 3D, and
finally project this model into each image to obtain an as-
sociated depth map. Since all cameras are calibrated, any
2D point p in an image with a valid depth estimate can be
mapped to a 3D point P on the visual hull. Using this tech-
nique, we map a set of 2D points constituting a 2D curve
in the image to obtain an initial estimate of the correspond-
ing 3D curve. These curves are assumed to be visible from
viewpoints near the original camera viewpoint.

As an alternative to our approach, in order to handle car
images with textured backgrounds, one could use structure
from motion to reconstruct the full scene and then automat-
ically segment the car using the method proposed in [8].

3.3. Model Refinement

Edges seen on cars can arise from specular reflections in
the scene. The resulting spurious curves in the 3D curve
model can corrupt the 3D chamfer matching score and need
to be removed for robustness. We filter these spurious edges
based on the observation that given multiple viewpoints, the
3D position of points on these curves inferred from the 3D
model are not consistent across different views (Figure 2b).

To detect spurious edges for a reference view, we con-

(a) (b) (c)

Figure 2. Curve Refinement: (a) original curves; (b) curves from
neighboring views reprojected into current view; (c) the subset of
curves with depths consistent in three views.

sider its left and right neighboring views in the input se-
quence. Each 3D point on a curve is projected into the
neighboring views to test whether the projected point lies
within τd pixels of an edge point on the corresponding
epipolar line in the respective image. Points that have valid
matches in both neighboring views are retained.

For each retained point, given the two points matched
on corresponding epipolar lines in the neighboring views,
we use the Direct Linear Transform [29], i.e. linear trian-
gulation to re-estimate the position of the 3D point. This
refinement is performed for all 3D points on all 3D curves
in every viewpoint of the model . An example of the refined
model is shown in Figure 2c.

4. 3D Chamfer Matching

Once we have built our 3D view-based curve models, we
can use these to recognize the car make and model of a new
test image. For each model, we estimate the transforma-
tion M = K[R|t] that minimizes the sum of reprojection
errors Dc given in equation (1) between the NM projected
3D points of the model, PMPi, and the NT 2D points in
the image, {pk}.

To avoid an expensive search over all possible model
poses and positions, we would like to efficiently recover the
initial pose of the car using a pose estimation approach. A
number of such techniques have been developed [21, 31].
In Section 6 we describe a novel technique for automatic
initialization of the model pose and in Section 7.1 we show
evaluation results using this technique in comparison with
hand initialized poses.

Given an initial pose estimate, we refine it using cham-
fer matching by minimizing (1) using the Levenberg-
Marquardt non-linear least squares algorithm. To update
the parameters controlling the camera projection matrix M ,
we compute the Jacobian J for our camera parameters. We
represent the camera rotation by the axis-angle representa-
tion ω = θn̂ = (ωx, ωy, ωz) and the camera position by
the camera center c = (cx, cy, cz). We also allow the focal
length f to vary and assume that the principal point (ox, oy)
is at the center of each test image. The camera parameter
vector is thus specified by γ = (ωx, ωy, ωz, cx, cy, cz, f).
Details for how the Levenberg-Marquardt algorithm can be
used to perform this alignment can be found in [29, §6.2.2].
Figure 3 shows an example of the initial manual align-



Figure 3. 3D chamfer matching. The top row shows the car image
and the edges detected on the image. The bottom row shows the
projected 3D edges overlaid on a test image after manual initial-
ization and after refinement.

ment followed by the automatic alignment obtained with
3D chamfer matching.

One detail that was left unspecified in the chamfer
matching formula (1) was the form of the distance function
d(p, q). The most common choice for this function is the
squared Euclidean distance d(p, q) = ‖p − q‖2, but other,
more robust or discriminative functions are possible, which
we describe below.

Perpendicular distance. Instead of minimizing the Eu-
clidean distance d(p, q) = ‖p − q‖2, which fixes the as-
sociation between model and test points, we can instead
use a perpendicular distance d⊥ = n · (p − q) and
n = (p − q)/‖p − q‖, where n remains fixed during the
Jacobian computation. This allows points to “slide” along
curves in the direction perpendicular to the current error. In
our experiments, we have found that this formula results in
much faster convergence.

Robust matching. To make our alignment process more
robust to missing model points, we use a Huber function
in our distance measurements. The Huber function is a
quadratic function for ‖p − q‖ < 10 pixels and a linear
penalty for larger deviations.

Orientation distance. Since most edge pixels belong to
long smooth contours, they have an associated orientation.
For two shapes to align properly, we not only want close
alignment of model to image edges, but also the orientation
of the edges to be the same. For example, we do not want
a vertical model edge to align well with a region with many
horizontal edges even though the distance to the nearest im-
age edge is very small. To penalize such deviations, we add
the orientation metric introduced in [26],

Dθ =
1

NM

NM∑
i=1

|θ(pk)− θ(qi)|, (2)

where θ(pk) is the orientation of the closest edge point
found in the original chamfer match (1), θ(qi) is the orien-
tation of the projected model point qi = PMPi, computed
from its neighboring projected points, and |θ1 − θ2| mea-
sures the angular difference modulo π.

5. Verification
A model correctly aligned to an image will have a low

chamfer distance. We use the average chamfer distance Dc,
and the average orientation distance Dθ as features in a lo-
gistic regression classifier to predict the correct model for
each test image. The average chamfer distance is com-
puted by choosing the nearest image point for each pro-
jected model point and summing the robust distance func-
tions, divided by the number of model points NM to make
the scores invariant to the number of model edges. The ori-
entation distance is the average difference in normal orien-
tation of the corresponding points.

We normalize all of the features to have zero mean and
unit variance for classification. The logistic regression out-
puts a probability that the aligned image is of the specific
make and model,

P (Y = 1|D,β) = 1

1 + e−Dβ
, with (3)

Dβ = β0 + β1Dc + β2Dθ. (4)

To estimate the best β parameters for each car model, we
use leave-one-out cross validation (LOOCV) and find

β∗ = argmax
β

∑
t

lnP (Yt|Dt, β)−
λ

2
||β||2, (5)

where Yt = 1 for positive training examples and Yt = 0 for
negative examples.

6. Detection and Pose Estimation
In this section we describe two methods for automati-

cally detecting the pose and location of the cars in the test
images. The first is an extension of the work in [31]. The
second is a novel technique based on finding the ellipses
corresponding to the wheels of the cars and then using the
ellipse bitangents, along with the 3D model, to accurately
estimate the car pose. These pose estimation algorithms are
used to automatically initialize the chamfer matching algo-
rithm described in Section 4.

6.1. Aspect layout detection and pose estimation

We build upon the work in [31] for initializing the pose
for chamfer matching. The authors use the aspect layout of
the object to detect the object in the image as well as provide
a coarse estimate of the viewpoint of the object. However,
this estimate alone is not enough to initialize the chamfer
matching as we need the full 3D pose of the model.



(a) (b)
Figure 4. 3D pose estimation of the car using two detected wheels:
(a) bitangents for a pair of ellipses; (b) an example image showing
detected ellipses on the wheel rims, the corresponding bitangents
and four points of bitangency used to estimate the full 3D pose.

To estimate the full 3D pose, we start with the initial
estimates of the viewpoint and the detection region of the
car. We then perform a local search around the initial view-
point estimates in the pose space (optimizing over the focal
length, camera center, 3D rotation and translation) to align
the model with the car in the test image. We build the scor-
ing function for this as follows. We extract the model edges
corresponding to a particular viewpoint, as well as the test
image edges that fall inside the bounding box spanned by
the model edges. We blur these edge images, perform dense
descriptor matching [2] on them and compute the match dis-
tance. The dense descriptor matching provides an overlap
distance between the model and the test edges while allow-
ing for some slack. We found this metric to be a good pre-
dictor of the rough initial alignment. We report the full 3D
pose corresponding to the lowest match distance as the ini-
tial pose estimate.

6.2. Ellipse-based pose estimation

While developing a general-purpose feature-based detec-
tion and pose estimation technique has some advantages, an
alternative approach involves using category-specific geo-
metric features. Cars and trucks contain a variety of struc-
tural features such as headlights and taillights, grills, and
logos, which could all potentially be used for detection and
pose estimation. They also have bilateral symmetry [27],
which for frontal or near-frontal views, can provide one de-
gree of freedom – the rotation of the car around its vertical
axis.

Amongst all these potential features, the wheels on cars
and trucks may be the most prominent and easy to detect,
at least for views where they are not too foreshortened (Fig-
ure 4b). The advantage of using wheels is that they provide
highly accurate pose estimates because the full 3D pose is
encoded in the elliptical shape of the projected wheel (hub-
cab) rims as well as their relative positions.

Consider the schematic illustration of a pair of wheels
shown in Figure 4a. After detecting the ellipses correspond-
ing to the two wheels (Figure 4b), we can find the bitangents
that pass through the tops and bottoms of the two wheel rims
and hence form a pair of parallel “horizontal” lines in 3D.

Connecting the bitangency points with an orthogonal pair
of lines provides us with the vertical vanishing point.2

It is well known that an orthogonal pair of finite vanish-
ing points can be used to recover the orientation (3D rota-
tion) of an object or coordinate frame, assuming a known
image optical center [29]. Unfortunately, we often see cars
under configurations, e.g., true side views or any view at
car level, where one or both vanishing points are infinite
(the bitangent lines are parallel). Fortunately, the shape of
the ellipses can come to our rescue, since the foreshortening
(eccentricity) can be used to recover the rotation. In brief,
the horizontal and vertical vanishing points along with the
ellipse shape can be used to compute a homography that
maps any ellipse into a unit square. The derivative (Ja-
cobian) of this homography at the image origin provides
two axes that encode the rotation matrix. Finally, the focal
length can be determined from the rotation matrix and the
original vanishing points. We provide more detailed math-
ematical derivation in our supplementary material [10].

In our application, we can use a stronger cue to recover
a more accurate pose estimate. Since we have built a 3D
model for each of the cars, we use four known 3D points
corresponding to the wheel rim tops and bottoms (for each
car model) to compute a full 3D pose estimate. The details
here are even simpler than the model-free pose estimation
(essentially using a direct linear transform) and are also de-
scribed in the supplementary materials [10].

7. Evaluation
For our evaluation, we collected 190 test images from

the web, 20 images for each of eight Honda models and 30
other random cars. The eight models span various car cate-
gories such as sedan, SUV, hatchback, mini-van and truck,
and are shown in Figure 9 (Appendix A) of our supplemen-
tary [10]. We avoided images taken against uniform back-
grounds, since we wanted to test our system operating “in
the wild”, with cars shot in front of varied textured back-
grounds from different viewpoints and with lots of body re-
flections.

In order to evaluate the 3D chamfer matching and verifi-
cation system described in Sections 4 and 5, we first present
results where the initial poses for matching are hand gen-
erated. For each test image, we manually aligned the 3D
model using an interactive viewer. In Section 7.1 we present
comparative results with our automatic pose initialization
algorithms described in Section 6.

Some sample results from our chamfer matching algo-
rithm are shown in Figure 5. Alignments to positive exam-
ples are shown in green and alignments to negative exam-
ples are shown in red. Notice that, as expected, the align-
ment for the positive examples is usually much better than

2 As shown in Figure 4a, we discard the blue bitagents since the ellipse
centers lie on different sides of these lines.



Figure 5. Some sample alignment results of 3D curves with positive examples (green) and negative examples (red) for a few of the car
models (row-major order). Note that even though the negative car examples look similar to positive examples in many cases, the fits are
much better for the positive examples.

the alignment for the negative examples, even though in
some cases the cars look quite similar, e.g., the Civic Sedan,
the Civic Coupe, and the Insight.

In addition to evaluating our chamfer matching algo-
rithm, we also used our manual initializations to test two
baseline methods. The first is a classic feature-based
method, where keypoint descriptors [19, 2] are matched be-
tween a test image and a model image. For each test image,
we choose the closest model viewpoint and score the image
as the number of inlier matches that satisfy the ratio test.
Due to absence of texture and presence of specular reflec-
tions, the interest points locations are not repeatable, lead-
ing to poor matching performance. The second baseline we
evaluated is affine matching between the 2D model and 2D
test image based curves. For a test image, we consider the
least squares affine transformation between the 2D curves
of the closest model viewpoint and the 2D projection of the
manual alignment. The transformation is further refined us-
ing affine chamfer matching and the score for a test image
is the average chamfer distance. While affine matching is
often able to align to the coarse shape of the car, our results
show that it is unable to discriminate the finer details needed
for car recognition.

We evaluate the performance of these different matching
techniques by generating Precision/Recall curves as shown
in Figure 6. For each of our eight models, we compute prob-
abilities as described in the previous section across all 190
test images. We then generate the P/R curves by ranking
the images based on these probabilities and counting the
true positive and false positive rates.

Table 1 summarizes these P/R curves using mean area
under the Precision/Recall curve (AUC) numbers. The
AUC values averaged across all eight models are 0.189
and 0.256 for the 2D keypoint and chamfer baselines, and
0.507, 0.767, 0.799, for the chamfer distance, orientation

Model 2D key 2D chamf 3D chamf 3D orient 3D comb
CivC 0.175 0.173 0.624 0.862 0.844
CivS 0.257 0.383 0.655 0.636 0.668
InsH 0.155 0.232 0.521 0.838 0.869
Ody 0.281 0.180 0.563 0.919 0.912
Pil 0.124 0.434 0.437 0.559 0.709
Rid 0.114 0.406 0.681 0.801 0.873
Ele 0.240 0.117 0.279 0.896 0.867
Fit 0.168 0.119 0.292 0.624 0.647
Avg 0.189 0.256 0.507 0.767 0.799

Table 1. The mean area under the precision-recall curve (AUC)
for the two baselines 2D keypoint and chamfer matching, and the
three different cost functions for 3D alignment, namely chamfer,
orientation and chamfer+orientation.

distance and chamfer+orientation measure with 3D align-
ment. These results indicate that the 3D chamfer distance
performs better than both baselines. However, spurious
edges in the interior of the car or in the background can cor-
rupt the chamfer metric, leading to poor accuracy for some
models. The orientation distance on the other hand is a bet-
ter metric as it measures local agreement in shape of the
matching curves. Combining the chamfer and orientation
distances generally improves the accuracy.

Table 2 shows the confusion table generated by select-
ing the most likely model for each of our 190 test images.
To reject the “other” class, we use leave-one-out validation
to choose a threshold based on percentage recall for each
model. We report the classification accuracy at an operat-
ing point of 95% recall, where a car is classified as “other”
only if it is rejected by all the models. The Civic Coupe
and Sedan are often confused with each other whereas the
Insight, Element and Fit are accurately recognized more of-
ten. The Pilot is sometimes confused with the Ridgeline as
they look similar from the front. The cars in the “other”
category also get frequently confused with the eight car cat-
egories.



Figure 6. Our recognition results for eight car models on 190 test images. We compare the baselines of 2D keypoint and chamfer matching
versus the different alignment measures using our 3D model: chamfer distance, orientation distance and both combined. There are 20
positives images per car and 30 none-of-the-above images.

CivC CivS InsH Ody Pil Rid Ele Fit other
CivC 0.85 0.10 - - - - - - 0.05
CivS 0.05 0.75 0.05 - - - - 0.10 0.05
InsH - - 0.90 - - - - 0.05 0.05
Ody - - - 0.90 - - - 0.05 0.05
Pil - - - - 0.85 0.10 - - 0.05
Rid - - - - 0.10 0.85 - - 0.05
Ele - - - - 0.05 - 0.95 - -
Fit - - - - - - - 0.95 0.05
other 0.03 0.15 0.03 - 0.30 0.03 0.03 0.03 0.40

Table 2. Confusion matrix. Each row shows the results for 20 test
images of one car model and 30 test images of category other, and
each column shows which cars it was classified as using our full
system. We use a threshold set at 95% recall for each car model to
reject the “other” category.

7.1. Automatic pose initialization

In this section, we present results from automatically ini-
tializing the pose estimates using the algorithms described
in Section 6. We use the estimates from the layout model-
based algorithm as well as the bitangent-based algorithm
for initialization. The chamfer matching algorithm runs
the matching with each of these initial estimates and re-
tains the one with the lowest match distance. In our ex-
periments, we found that the chamfer matching scheme
preferred the bitangent-based estimates more often than
the layout model-based estimates, which is reasonable, as
the layout-based estimates are obtained using a greedy ap-
proach that is more prone to be stuck in a local minima.
However, the layout model-based estimates were useful
when the cars wheels were not visible.

CivC CivS Ins Ody Pil Rid Ele Fit Avg
auto 0.67 0.41 0.74 0.51 0.46 0.79 0.66 0.55 0.6
hand 0.84 0.67 0.87 0.91 0.71 0.87 0.87 0.65 0.8
Table 3. The mean area under the precision-recall curve (AUC) for
automatic initialization (auto) versus manual initialization (hand)
using the combined chamfer and orientation distance metric.

CivC CivS InsH Ody Pil Rid Ele Fit other
CivC 0.55 0.10 0.20 - 0.05 - 0.05 0.05 -
CivS 0.20 0.45 - 0.05 0.05 - 0.15 0.10 -
InsH - - 0.90 - - - 0.10 - -
Ody 0.05 0.10 0.10 0.30 0.25 0.05 0.15 - -
Pil - 0.15 0.05 0.05 0.60 0.10 0.05 - -
Rid - 0.05 - 0.05 - 0.80 0.05 0.05 -
Ele 0.05 - - 0.10 0.05 - 0.80 - -
Fit - 0.05 - 0.10 - - 0.10 0.75 -
other - 0.23 0.03 0.23 0.24 0.07 0.17 0.03 -

Table 4. Confusion matrix for classification using automatic ini-
tialization. Each row shows the results for 20 test images of a
car model and 30 images of the other category, and each column
shows the predictions from our method. We use a threshold set at
95% recall for each car model to reject the other category.

In Table 3 we summarize the mean area under the Pre-
cision/Recall curve (AUC) numbers for chamfer matching
using the chamfer+orientation distance metric with the au-
tomatically initialized poses versus the hand initialized ones
(which is same as the last column in Table 1.) In Table 4
we also present the confusion matrix for the automatically
initialized matching, similar to the one in Table 2. The au-
tomatic pose estimates perform reasonably well but they are
not as good as the hand initialized ones.



8. Conclusion
In this paper, we have developed an approach for verify-

ing the make and model of a car from a single image taken
from an arbitrary viewpoint using view-based 3D curve
models. Our experiments show that these models can be
accurately aligned to test images after which chamfer dis-
tance and orientation distance can be used to recognize the
car make and model under wide range of viewpoints. We
also presented two automatic methods for recovering the
full 3D pose of the car in the test image which is used to
initialize the chamfer matching based alignment method.

In the future, we plan to incorporate appearance-based
features into our view-based 3D models and extend our ap-
proach to automatically learn semantic parts of cars that can
be highly discriminative for make and model recognition,
such as car logos, grill, headlights and taillights. (Some pre-
liminary results on incorporating taillights can be found in
[10].) We will explore extensions that combine appearance
and geometric features with the goal of improving accuracy
in detection, pose-estimation and make and model recogni-
tion of a car from a single image.

References
[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. TPAMI, 24(4):509–
522, April 2002. 2

[2] M. Brown, G. Hua, and S. Winder. Discriminative learning
of local image descriptors. TPAMI, 33(1):43–57, January
2011. 5, 6

[3] T. Cootes, D. Cooper, C. Taylor, and J. Graham. Active shape
models—their training and application. CVIU, 61(1):38–59,
January 1995. 2

[4] L. Dlagnekov and S. Belongie. Recognizing cars. UCSD, La
Jolla, CA, TR. CS2005-0833, 2005. 1, 2

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL visual object classes (VOC)
challenge. IJCV, 88(2):147–168, July 2010. 2

[6] R. Farrell, O. Oza, N. Zhang, V. Morariu, T. Darrell, and
L. Davis. Birdlets: Subordinate categorization using volu-
metric primitives and pose-normalized appearance. In ICCV,
2011. 1

[7] J. Krause, M. Stark, J. Deng, L. Fei-Fei 3D Object Represen-
tations for Fine-Grained Categorization . In 4th IEEE Work-
shop on 3D Representation and Recognition (ICCV 2013),
December 2013. 1

[8] D. Glasner, M. Galun, S. Alpert, R. Basri, and
G. Shakhnarovich. Viewpoint-aware object detection and
pose estimation. In ICCV, 2011. 1, 2, 3

[9] D. Hoiem and S. Savarese. Representations and Techniques
for 3D Object Recognition and Scene Interpretation. Morgan
& Claypool, 2011. 2

[10] E. Hsiao, S. Sinha, K. Ramnath, S. Baker, L. Zitnick, and
R. Szeliski. Car make and model recognition using 3d curve
alignment. Technical Report MSR-TR-2014-9, Microsoft
Research, February 2014. 5, 8

[11] D. P. Huttenlocher, G. Klanderman, and W. Rucklidge.
Comparing images using the Hausdorff distance. TPAMI,
15(9):850–863, September 1993. 2

[12] D. P. Huttenlocher and S. Ullman. Recognizing solid objects
by alignment with an image. IJCV, 5(2):195–212, 1990. 2

[13] D. M. Jang and M. Turk. Car-rec: A real time car recognition
system. In WACV. IEEE Computer Society, January 2011. 2

[14] A. Laurentini. The visual hull concept for silhouette-based
image understanding. PAMI, pages 150–162, 1994. 3

[15] M. Leotta and J. Mundy. Predicting High Resolution Im-
age Edges with a Generic, Adaptive, 3-D Vehicle Model. In
CVPR, 2009. 2

[16] C. Li, C. Gatenby, L. Wang, and J. Gore. A robust paramet-
ric method for bias field estimation and segmentation of mr
images. In CVPR, 2009. 2

[17] Y. Li, L. Gue, and T. Kanade. Robustly aligning a shape
model and its application to car alignment of unknown pose.
TPAMI, 33(9):1860–1876, September 2011. 1, 2

[18] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa.
Fast directional chamfer matching. In CVPR, 2010. 2

[19] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, November 2004. 6

[20] C. Lu et al. Contour based object detection using part bun-
dles. CVIU, 114(7):827–834, July 2010. 2

[21] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for cate-
gory specific multiview object localization. In CVPR, 2009.
1, 2, 3

[22] N. Payet and S. Todorovic. From contours to 3d object de-
tection and pose estimation. In ICCV, November 2011. 2

[23] G. Pearce and N. Pears. Automatic make and model recogni-
tion from frontal images of cars. In AVSS, September 2011.
1, 2

[24] V. Petrovic and T. Cootes. Analysis of features for rigid
structure vehicle type recognition. In BMVC, 2004. 1

[25] H. Schneiderman and T. Kanade. Object detection using the
statistics of parts. IJCV, 56(3):151–177, February 2004. 2

[26] J. Shotton, A. Blake, and R. Cipolla. Contour-based learning
for object detection. In ICCV, volume 1, pages 503–510,
October 2005. 2, 4

[27] S. N. Sinha, K. Ramnath, and R. Szeliski. Detecting and Re-
constructing 3D Mirror Symmetric Objects. In ECCV, 2012.
5

[28] H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense
multi-view representation for detection, viewpoint classifi-
cation and synthesis of object categories. In ICCV, 2009. 1,
2

[29] R. Szeliski. Computer Vision: Algorithms and Applications.
Springer, New York, 2010. 3, 5

[30] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele,
and L. Van Gool. Towards multi-view object class detection.
In CVPR, volume 2, pages 1589–1596, June 2006. 1, 2

[31] Y. Xiang and S. Savarese. Estimating the aspect layout of
object categories. In CVPR, 2012. 1, 3, 4


