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Abstract

Most existing structure from motion (SFM) approaches
for unordered images cannot handle multiple instances of
the same structure in the scene. When image pairs contain-
ing different instances are matched based on visual similar-
ity, the pairwise geometric relations as well as the corre-
spondences inferred from such pairs are erroneous, which
can lead to catastrophic failures in the reconstruction.

In this paper, we investigate the geometric ambiguities
caused by the presence of repeated or duplicate structures
and show that to disambiguate between multiple hypothe-
ses requires more than pure geometric reasoning. We cou-
ple an expectation maximization (EM)-based algorithm that
estimates camera poses and identifies the false match-pairs
with an efficient sampling method to discover plausible data
association hypotheses. The sampling method is informed
by geometric and image-based cues. Our algorithm usually
recovers the correct data association, even in the presence
of large numbers of false pairwise matches.

1. Introduction
Structure from Motion (SFM) is the problem of simulta-

neously estimating scene structure (3D points) and camera
poses from an unordered set of images. Typical SFM meth-
ods first robustly match features in as many pairs of input
images as possible, thereby recovering measurements of the
relative rigid poses between camera pairs. Bundle adjust-
ment [20] then computes a maximum likelihood estimate
of the camera poses and point locations, after initialization
using a subset of the pairwise measurements.

It turns out that in this traditional SFM pipeline, the im-
plicit data association1 method contains a fundamental as-
sumption of there being only a single instance of any struc-
ture. When multiple large structures are similar, for ex-

1In SFM, “data association” is the problem of determining correspon-
dences, either between feature points or whole images. In the case of whole
images, it can be seen as the validity of hypotheses that image pairs contain
sets of matching features corresponding to the same 3D points.

(a) (b)

(c) (d)

Figure 1: (a–b) Two identical objects in the scene result in a
folded reconstruction. By inferring the erroneous matches
(shown in red in the match graph adjacency matrix (c)), our
method produces an accurate reconstruction shown in (d).

ample as shown in Figure 1, this assumption breaks down.
This causes the pipeline to believe that two or more sep-
arate objects or structures are in fact the same, or to “mix
and match” data associations between instances, which usu-
ally gives rise to folded or ghost structures. This is often a
problem in architectural scenes.

In such cases, the relative pose estimates and data as-
sociations between the cameras involved in an erroneous
match pair are incorrect. With large duplicate structures, the
erroneous match pairs can form large, self-consistent sets,
as shown in Figures 1 and 2. Without additional knowl-
edge, there is no way to infer on a local scale that a partic-
ular small fraction of the match pairs is correct and the rest
are incorrect. To avoid minor data association errors, state
of the art SFM pipelines use smart heuristics for greedily
choosing match pairs [17, 19, 13, 9, 18], though they can-
not exclude large coherent sets of inter-instance matches.

Our goal in this paper is to determine the correct data
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association between pairs of images. We start with a set of
geometrically consistent but potentially incorrect pairwise
image matches and then determine which are correct and
which are erroneous.

A potential approach is to exploit redundancy of the
matches to detect which are inconsistent with the majority
of the other matches (we describe this in Section 3). This
approach labels the largest consistent set of edges as cor-
rect and the rest as erroneous, and is similar to previous
approaches by Zach [23] and Govindu [7]. For reasons we
discuss later on, this approach still contains the single in-
stance assumption because it models the erroneous matches
as statistically independent. Thus it can fail on multiple in-
stances unless the erroneous matches are relatively few.

The contributions of this paper are first, to explain the
fundamental difficulties that arise in structure from mo-
tion in the presence of duplicate structures and why current
methods still often fail in such cases, and second, to propose
a probabilistic model and method for inferring the correct
data association that unify current approaches by combin-
ing geometric reasoning and non-geometric cues.

2. Related Work
The primary problem that occurs with duplicate struc-

ture is that large self-consistent sets of geometrically valid
pairwise (or triplet-wise) image matches between instances
are in fact incorrect. Previous work towards addressing this
has used both geometric reasoning about camera poses and
cues found in the images themselves.

Reasoning about large-scale structure matches relies
on data association errors being discoverable by globally-
inconsistent matches. For example, in Figure 1, by looking
at small neighborhoods of matches, it is unclear whether the
matches between the two oat boxes are correct, or if the con-
flicting matches between the oat boxes and the yellow box
are correct. Indeed, the former outnumber the latter. By
considering all of the measurements, the conflict between
these two sets of edges is revealed.

Govindu [6, 7] randomly samples spanning trees on a
pairwise relative rotation graph to initialize camera orien-
tations. The hypothesis maximizing a statistical measure
based on the number of consistent matches and their qual-
ity is then selected. Zach et al. [23] infers the validity of
matches by approximate inference over statistics on which
matches are involved in inconsistent loops (which should be
nearly closed) in the match graph. Klopschitz et al. [11] in-
crementally build up a reconstruction from multiple subsets
of the cameras with the highest local connectivity.

Martinec and Pajdla [13] repeatedly discard the highest-
residual matches to be robust to some incorrect matches.
Their method can handle some amount of repeated struc-
ture, such as the similar structures on opposite sides of the
St. Martin rotunda, where the erroneous matches constitute

a minority (8%) of the measurements, and importantly, oc-
cur with approximate statistical independence.

Data association is also a critical problem in simulta-
neous localization and mapping (SLAM) in the context of
robotics [1, 5, 16, 8]. When a set of newly observed features
match to previously observed ones, the algorithm must de-
cide whether a loop closure is occurring or the features just
appear to be similar. However, the time-sequential nature
of the incremental map-building process means that a new
image can only match to features that can be observed near
the camera’s current location, making erroneous matches
between instances of structure much less likely than for un-
ordered images, as in SFM.

Earlier work by Zach et al. [22] proposed to resolve data
association ambiguities using the features that are matched
between two images but not detected in a third image. The
intuition is that if a large fraction of image features match
between two images but not a third in a camera triplet, it
is likely that the third image observes a different instance
than the first two. We integrate this powerful cue into our
proposed method, which combines multiple image cues and
global geometric reasoning.

3. Consistent Majority Optimization
In this section, we describe a basic probabilistic model

for correct and erroneous pairwise image matches and an
associated inference method. This serves as one component
of the unified method we present in Section 5. This basic
model labels as erroneous the matches that are geometri-
cally inconsistent with the majority of the others.

In the next section, we show why this model by itself
cannot solve any but the easiest cases of duplicate structure
because it assumes that the erroneous matches are statis-
tically independent of each other. Previous methods such
as [23, 7, 13] also suffer from this limitation. Here we illus-
trate the cause with the help of a generative model.

3.1. Measurement Model

Given a set of putative image matches and their associ-
ated camera transforms, which are geometrically consistent
with rigid camera transformations, we wish to infer which
are correct. We introduce a generative model for these
matches with hidden correct/erroneous indicator variables.

In our model, the ith measurement zi, supposing it is be-
tween the jth and kth cameras, is generated as the relative
pose between them corrupted by Gaussian noise,

zi ∼ N
(
x−1j xk, Cyi

)
, (1)

where xj and xk are the poses of the jth and kth cameras.
The inverse is the inverse transformation, equivalent to the
matrix inverse for pose and rotation matrices. Thus, x−1j xk
is the predicted relative pose between cameras j and k. Cyi
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is the covariance matrix of the noise on the camera transla-
tion directions and rotation axes. We model the noise on
each measurement as a mixture of Gaussian “inlier” and
“outlier” densities. When yi=1, C1 is the inlier covariance,
which be obtained from the pairwise reconstructions. When
yi=0, C0 is the outlier covariance, which is chosen to be
large (we use uniform 1 rad variance for rotation and 0.5
for the unit translations).

As we will describe in Section 5, in the first stage of
our algorithm, we work only with the camera rotations to
avoid scale ambiguity, in which case xj , xk, and zi belong
to the 3 × 3 matrix Lie group of rotations SO (3). In the
second stage, we model full cameras poses by registering
view triplets as we describe in Section 3.3, in which case
xj , xk, and zi are members of the 4× 4 matrix Lie group of
3D rigid transformations SE (3).

The Gaussian mixture model makes the probability den-
sity on the camera poses in general non-Gaussian. However,
when it is conditioned on the hidden indicator variables y,
the distribution is Gaussian when linearized about an esti-
mate of the camera poses x.

3.2. Iterative Inference Using EM

When all measurements are correct, the unknown poses
can be recovered by minimizing least-squares error of the
pose graph (i.e. match graph) [15, 6, 18, e.g.]. Since some
are erroneous, we jointly infer the poses and the proba-
bilities of each match being correct with an expectation-
maximization (EM) algorithm [3]. This avoids combinato-
rial search over all yi by finding a locally-optimal solution.
In Section 5, we extend this method with random restarts to
be more likely to find the global optimum.

In the M step we find the maximum expected likelihood
solution for the poses x given an estimate of the expected
values of the indicator variables y,

xt = argmax
x

∑
i

∑
yi

〈log p (xj , xk |zi, yi)〉yi |xt−1,zi
.

(2)
The E step then estimates the expected value of each yi, i.e.,
the probabilities of each of the edges being an inlier.

This leads to the M-step update equation2

xt = argmax
x

log p (x) +
∑
i

λti
∥∥z−1i x−1j xk

∥∥2
C1

+
(
1− λti

) ∥∥z−1i x−1j xk
∥∥2
C0

, (3)

where p(x) is a pose prior (we place a prior only on one
of the cameras, to fix it at the origin), and ‖ · ‖C is the
Mahalanobis distance with covariance matrix C. The term

2Please see the supplementary material
(http://www.cc.gatech.edu/~richard/cvpr11-supp/) for a
derivation of these updates and brief explanation of Lie group notation.

z−1i x−1j xk is the deviation of the measurement zi from its
prediction x−1j xk (see Equation 1). λti is the expectation of
yi, from the E-step update

λti =
N
(
z−1i x−1j xk; 0, C1

)
p (yi=1)∑

yij=0,1N
(
z−1i x−1j xk; 0, Cyi

)
p (yi)

. (4)

Note that this is evaluated using the pose estimates from
the previous iteration, though we omit t − 1 superscripts
on the poses for clarity. p (y) is a prior on the probability
of an edge being correct. We use an uninformative prior
in experiments, but this could be specified beforehand or
estimated online.

3.3. Inferring 6-DOF Camera Poses via Triplets

The inference method described above is defined and
valid both for camera rotations in SO (3) and for full cam-
era poses (rotation and translation) in SE (3). However, due
to the inherent scale ambiguity in 3D reconstructions, the
relative scale between any pair of pairwise relative transla-
tions is unknown. The optimal (MLE) way to handle this
would be to use triplet measurements that constrain rela-
tive but not global scale. Because this would add a layer of
complexity both to the problem definition and implementa-
tion, we instead opt for a simpler method of resolving scale
that actually over-counts some measurements. Performing
a full bundle adjustment (using the original feature mea-
surements) after removing erroneous matches yields a final
SFM solution that is not affected by this over-counting.

The approach we choose is to first perform triplet recon-
structions, then choose a tree of triplet reconstructions span-
ning all of the cameras and traverse the tree while rescaling
each child triplet to be consistent in scale with its parent.
During the M-step update of xt, we treat each triplet recon-
struction as a set of three pairwise relative pose measure-
ments (one from each pair in the triplet). Amongst multiple
measurements for a camera pair, we use the one with the
minimum residual. During the E-step, we compute a prob-
ability of being correct for each triplet, by first computing a
similarity transformation that aligns each triplet reconstruc-
tion with the current pose estimates using the approach de-
scribed in [10] and then evaluate Equation 4 with the camera
projection centers of the scaled and current pose estimates.

4. Difficulties Caused by Multiple Instances
The model in the previous section assumes statistically

independent outliers. Unfortunately, the erroneous match
pairs that occur due to large duplicate structures can form
large, coherent sets that can overwhelm the correct matches
and appear as inliers, while the smaller sets of correct
matches appear as outliers. In this section, we start with
an example of how large coherent sets of erroneous image
matches form, and show why modeling them as statistically
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(a) (b) (c)

(d) (e)

Figure 2: (a) The CUP sequence has a 180◦ symmetry. (b,d)
A folded match matrix and reconstruction. Numerous erro-
neous matches between opposite sides of the cup (in blue in
the matrix) outnumber the few matches at the “fold points”
(in red in the matrix). Traditional SFM puts all cameras on
one side, and the back of the cup is not reconstructed. (c,e)
The correct data association matrix and reconstruction ob-
tained using our approach (relying on the timestamps – see
Section 5). Many more matches are labeled as outliers (red
in the match matrices) to form the correct reconstruction.

independent leads to the implicit single instance assumption
and an incorrect cost function. We then show that the large
number of erroneous matches also makes it very difficult to
discover the correct solution using naïve methods. In Sec-
tion 5, we present our approach addressing these problems.

4.1. Coherent Sets of Erroneous Matches

In order to understand how the modeling of erroneous
edges as statistically independent leads to the implicit sin-
gle instance assumption, we start with an example. Figure 2
shows an “orbit” sequence with a 180◦ radial symmetry.
Matches between nearby cameras are correct, but matches
across the circle confuse the two sides of the cup as the same
structure and cause the reconstruction to fold in half.

The assumption of statistically-independent outliers in
this model implicitly results in the assumption of only one
instance of any scene structure. Some matches must be ig-
nored to produce a consistent reconstruction. In order to
fold the reconstruction, only the few matches at the “fold
points” of the folded reconstruction need to be ignored
(marked as erroneous), as seen in the red entries along the
diagonal of the match matrix in Figure 2b. To unfold the re-
construction, all of the many matches across the circle must
be ignored, as seen in the red entries of the match matrix
in Figure 2c. According to the independent-outlier model,
each match is ignored at a constant cost. Thus, the largest

coherent set of edges overwhelms any edges not consistent
with it. This model is only suitable when erroneous edges
occur randomly due to match errors, degenerate point con-
figurations, or other uncorrelated random processes.

4.2. Combinatorial Search for the Correct Matches

Correlated outliers are not the only problem to be ad-
dressed. In addition to requiring a scoring function that be-
haves correctly, any inference method must also discover
the correct solution. Exhaustive search is of course in-
tractable, and unfortunately, local search methods, such as
the EM algorithm presented in Section 3, as well as most
previous research, are susceptible to local minima.

Although stochastic sampling methods are generally
useful for solving problems with local minima, the coherent
erroneous matches again cause a problem for naïve sam-
pling methods. For sampling random spanning trees, for
instance, it becomes extremely unlikely to sample a tree
with no erroneous matches. We can see an example of this
from the ratio of red erroneous edges to blue correct edges
along any given row of the right-hand match matrix in Fig-
ure 2. In order to choose a correct hypothesis, the sampler
must roughly choose two correct matches for every image, a
probability that decreases roughly inverse-exponentially as
the number of images increases.

5. Proposed Method

Our approach combines image cues with global geomet-
ric reasoning to label pairwise image matches as correct and
erroneous. We sample minimal configurations of data asso-
ciations, and from these samples perform a local search for
complete match validity and camera pose configurations.
To address the issue of incorrect solutions appearing more
likely than the correct one, as described in Section 4, we for-
mulate a likelihood function that leverages image cues. To
efficiently discover the correct configuration, we also em-
ploy the cues in a heuristic to guide the sampling process.

For structure from motion, we apply the proposed tech-
nique in two stages. First, we estimate global camera
orientations using only pairwise relative rotation measure-
ments. Subsequently, we simultaneously estimate rotation
and translation using precomputed camera triplets and the
extension described in Section 3.3. For computing relative
pairwise pose and triplet reconstructions, we employ known
techniques described in [14, 17, 13, 18, 19, 2, 9]. Finally,
we use only the match pairs inferred as correct as input to a
state of the art structure from motion pipeline with standard
bundle adjustment [20] to compute the final reconstruction.

5.1. Sampling Minimal Hypotheses

The proposed algorithm is similar to RANSAC [4]. We
sample spanning trees, which are minimal hypotheses from
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Figure 3: (Left) A match graph with 4 cameras and 5 pair-
wise matches (three correct and two incorrect edges colored
black and red respectively) is shown. Red edges would sug-
gest different relative camera positions than shown. When
randomly sampling the spanning trees of this graph (shown
at the top) from a uniform probability density, the proba-
bility of sampling the left-most spanning tree (all its edges
are black) is quite low (upper histogram). By weighting the
edges using evidence of their correctness, the probability
of the left-most spanning tree becomes higher (lower his-
togram).

which we estimate all camera poses. A spanning tree con-
taining no erroneous matches is sufficient to generate a
complete correct solution after including other matches that
are consistent with it. As we show in Figure 3, the proba-
bility of naïvely (i.e. uniformly) sampling such a spanning
tree is very low, and becomes exponentially more so as the
number of matches increases, even if the fraction of cor-
rect edges remains the same. The key to sampling a correct
spanning tree in a reasonable amount of time is to define
a probability density over spanning trees in which correct
trees are more likely, and to sample from this density.

Generating random spanning trees according to a spe-
cific distribution is a well-studied problem in random graph
theory. Here we use an efficient algorithm by Wilson [21].
The distribution over spanning trees is defined by a weight
on each edge, and the probability of each spanning tree is
proportional to the product of its edge weights.

The key observation is that to specify a distribution
over spanning trees that is more likely to include correct
matches, we simply specify edge weights according to how
likely each edge is to be correct. We now describe two im-
age cues that we combine to form the edge weights.

Missing Correspondence Cue: For image pairs observ-
ing the same structure instance, portions of the rest of the
scene, such as the background, are also likely to match.
Otherwise, it is possible that the match is between sepa-
rate instances, as shown in Figure 4a. We use the missing
correspondence cue proposed by [22] slightly modified to
discount missing correspondences nearby to matched ones.

For the j-th image, the feature points matched to any
other image are denoted by Xj , out of which those matched

(a) (b)

Figure 4: (a) The missing correspondences (red points) are
visualized for a correct pair (top) and erroneous pair (be-
low). Low missing correspondences indicate that the match
pair is more likely to be correct. However no conclusions
can be drawn when the degree of missing correspondences
is high. (b) Likelihood L(yjk;M) on the binary indicator
yjk, which is 1 if the pairwise match between image j and
k is correct, and 0 if it is erroneous – see Eqs (5) and (6).

in the k-th image are denoted by Xjk. The fraction of
matched correspondences from image j to k is thus |Xjk|

|Xj | .
More matched correspondences increase the likelihood

that a match is correct, though we found it beneficial to
emphasize the effect of missing correspondences that oc-
cur spatially far in the image from matched correspon-
dences. The intuition is that missing correspondences near
to matched ones are likely to be simply matching failures
instead of missing structure due to an inter-instance match.

Thus, instead of defining a likelihood in terms of the
matched correspondence fraction, we use a background-
adjusted matched correspondence measure fjk =

|Xjk|
n∗ .

n∗ is a background-adjusted measure of the points in im-
age j. When there are many missing correspondences far
from the matched ones, n∗ is large (decreasing fjk and
thus the likelihood of a correct match) and approaches the
total number of point in image j. However, it decreases
(increasing the likelihood of a correct match) when there
are many missing correspondences near to the matched
ones. We define it as n∗ = |Xjk| +

∑
u/∈Xjk

bu, where
bu is a normalized measure of how far a point u is to
each of its R (=20) nearest-neighbors in Xjk, defined as
bu = ( 1n )

∑R
r (1− exp(−dur/σ)).

Using the background-adjusted matched correspondence
measure, the overall matched correspondence measure for
an image pair j, k is Mjk = max(fjk, fkj). Then, the like-
lihood on the binary indicator yjk, which is 1 if the pairwise
match between image j and k is correct, and 0 if it is erro-
neous (see Figure 4b), is

L(yjk=1;Mjk) =
1
2 (1 + (1 + exp(−α(Mjk − β)))−1)

(5)
L(yjk=0;Mjk) = 1− L(yjk=1;Mjk). (6)
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We use α = 20 and β = 0.5.

Image timestamp cue: Modern digital cameras record
timestamps in their EXIF tags. In a single photographer
scenario, this provides approximate sequence information,
and pairwise matches relatively close in time are less likely
to be erroneous than those far in time. This is not true in
other cases such as Internet photos [19, 12].

We calculate a likelihood that a match is correct based
on the timestamp cue according to the ratio between the
time difference of the match and the smallest time differ-
ence of any match involving one of its cameras, i.e., we
compute qjk =

minl{tjl}
tjk

. The time cue for pair jk is
then Tjk = max(qjk, qkj) and we model L(yjk;Tjk) as
described above (5,6) but with α=10 and β=0.25.

Given both cues, edge weights for pair jk are computed
as

wjk =
L(yjk=1;Mjk)L(yjk=1;Tjk)∑
yjk=0,1 L(yjk;Mjk)L(yjk;Tjk)

. (7)

5.2. Completing the Match Labeling

Given each sampled minimal hypothesis, we find the
complete set of matches consistent with the hypothesis and
then refine the estimated camera poses. From these hy-
potheses, we then select the one with the highest score.
For efficiency, we remove duplicate spanning trees from the
sample set using a binary hashing scheme prior to scoring.

To complete the labeling and refine the camera poses, we
use the EM algorithm described in Section 3 with a slight
modification. Since we are interested in finding the match
pairs consistent with the sampled spanning tree, we fix the
indicator variables yjk for the spanning tree edges to 1 so
they are always inliers in the EM solution. In the case of
pure rotations, we initialize EM by composing relative ro-
tations along the spanning tree.

Initialization in the case of triplets is similar. First, we
compute a minimal subset of edges in the original match
graph such that every edge in the subset is shared by at least
two different triplets, also ensuring that every node in the
graph is covered by the subset. We sample random span-
ning trees from this graph, with the same edge weights as
above. For each spanning tree, we find the subset of all
tree-induced triplets, those with two edges in the the span-
ning tree. Before chaining triplets to initialize EM, if the
set of triplets is not connected, additional triplets must be
selected in order to join the disconnected triplets. The two
largest disconnected sets are iteratively merged by com-
puting a loop erased random walk [21] between triplets in
these two sets. The random walk is performed on a trifo-
cal graph [2], in which triplets form nodes and triplets that
share edges (in the original match graph) are connected via
edges. This random walk uses the same edge weights as the
random spanning tree generator in Sec. 5.1.

Dataset BLDG DESK BOOKS OATS BOXES CUP

#Images 76 31 21 24 25 64
#Pairs 889 265 180 250 265 990

#Erroneous 161
(18%)

30
(11%)

50
(28%)

125
(50%)

115
(43%)

459
(46%)

Trad.SFM yes no no no no no
Ours-M yes yes yes no no no
Ours-T yes yes yes yes yes yes
Ours-B yes yes yes yes yes yes

Table 1: For each dataset, the number of images, match
pairs and erroneous pairs found by our method are listed.
We report whether a correct reconstruction was produced
with traditional SFM, and when we use missing correspon-
dence (Ours-M), timestamps (Ours-T) or both (Ours-B).

5.3. Scoring Hypotheses

The solution of the EM algorithm initialized from each
unique spanning tree hypothesis generates an inlier proba-
bility p(yjk=1) for each edge of the pairwise match-graph
in the rotation case. When sampling triplets, p(yjk) =
maxi∈Tjk

{p(yi)}, where p(yi) is the inlier probability of
the i-th triplet (using the notation from Sec. 3). We assign
yjk=1 (i.e. mark edge jk as an inlier) when p(yjk=1) > .9
and otherwise assign yjk=0. This binary assignment of the
variables in Y is called a configuration. From among all the
configurations sampled by our approach, we choose the one
with the highest log-likelihood,

L(Y ) =
∑
jk

log(L(yjk;Mjk)L(yjk;Tjk)). (8)

In ambiguous cases, where the cues are weak, the best k
configurations can be computed as well.

6. Results
In this section, we evaluate our inference method on

datasets that either contain duplicate structures or a large
object moved in the scene while the images were being
taken. The latter case produces coherent sets of erroneous
matches in the same way as duplicate structures. These
datasets contain very high fractions of coherent erroneous
matches (46-50%), and existing methods fail on most of
them. We compare to a state-of-the-art SFM pipeline in-
corporating smart initialization and outlier removal heuris-
tics, similar to [19]. Our method produces correct re-
constructions while in all cases but one the traditional
pipeline folds the reconstructions. Further comparisons
with BUNDLER [19] are shown in the supplementary ma-
terial.

In Figures 5 – 9, the color-coded matrices indicate the
validity of each pairwise image match according to the
missing correspondences cue, the timestamp cue, the hand-
labeled ground truth, and the labels inferred by our method
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using only pairwise rotations, and using triplet reconstruc-
tions as well. In each match matrix, entries are labeled as
“correct” (blue), “erroneous” (red), “unmatched” (black), or
discarded due to high residual errors in the match pair (red).
Red and blue matches are all interpreted as valid by tradi-
tional SFM pipelines, unless pruned during initialization.

Figure 5 shows one sequences with two identical books,
and another where a pile of books was moved partway
through the collection of the dataset. The traditional SFM
pipeline “folds” both reconstructions, i.e. only one instance
of the duplicate structure is reconstructed. Our method suc-
cessfully infers the matches between instances as erroneous
to produce correct reconstructions.

Figure 6 shows an outdoor scene with three similar fa-
cades on a street, on which the traditional method fails
whereas our method recoveres the correct structure and
camera motion.

Figure 7 shows the BOXES sequence, which contains two
identical cups and two identical cereal boxes. The tradi-
tional pipeline reconstructs a single cereal box and produces
a “ghost” instance of the textured ground plane pitched to
70◦, due to the second cereal box leaning at 70◦.

Figures 1 and 8 show the OATS sequence with two iden-
tical boxes in the scene and the incorrect reconstruction ob-
tained by the traditional method. In this sequence, the mo-
tion of the camera was mostly translational, as seen by the
camera trajectory in Figure 1(d). Due to this, inference us-
ing only camera rotations did not discard all the erroneous
matches (see Figure 8) whereas triplet-based inference cor-
rectly discarded most of the erroneous match pairs.

We compared our approach to [23] on the CUP sequence.
The match matrix inferred by [23] (in Figure 9a) labels
many erroneous edges as correct and labels edges at the
weakest part of the match pair graph as erroneous. In con-
trast, when we use timestamps (Figure 9(b,c)), many erro-
neous edges are filtered and a correct reconstruction is ob-
tained. We found the missing correspondence cue to be rel-
atively less discriminative for this dataset (see Figure 9d) as
there are fewer background features in this dataset.

Our method took 44 and 90 minutes on the CUP (64
imgs.) and BLDG (76 imgs.) datasets respectively, in addi-
tion to the baseline SFM pipeline which took 9 and 12 min-
utes respectively. Bundler took 24 and 56 minutes on CUP
and BLDG. Our EM implementation uses a dense solver for
the M-step. Currently, one iteration of Rotation EM takes
3 seconds and Triplet EM takes 30 seconds for CUP. Dense
solving is currently a large bottleneck but could easily be
replaced with a sparse solver. The algorithmic complexity
of our method depends on the strength of the cues. Stronger
cues mean fewer samples are required to reach the same de-
gree of statistical certainty of sampling a valid hypothesis.
In our experiments, we sampled 200 times (Rotation EM)
and 50 times (Triplet EM). To find the number of samples

(a) (b)

(c)

(d)

Figure 5: (a) BOOKS sequence – two identical books in the
scene. (b) DESK sequence – a pile of books have been
moved to create a second virtual instance. (c) For the
BOOKS sequence, the image cues, the ground truth label-
ing and the labeling computed by our method is shown. (d)
The same information is shown for the DESK sequence.

Figure 7: BOXES sequence: The left point cloud was ob-
tained from the comparison pipeline, whereas the one on
the right was obtained using our method.

needed to ensure with a certain probability that a valid hy-
pothesis was found is an interesting open question.

Our algorithm can fail if the cues are weak or mislead-
ing, when either a good hypothesis is never sampled, or the
correct reconstruction is sampled but scores lower than an
incorrect one. For the latter case, we can compute a fam-
ily of plausible top-scoring candidates for manual selection,
whereas competing methods have no way to achieve this.

7. Conclusion
In this paper, we have demonstrated the difficulty and

ambiguity of inferring data associations for SFM on scenes
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(a) (b) (c)

Figure 6: HOUSE sequence: (a) Identical building facades in separate locations. (b) The duplicate structures collapse into a
single instance in the baseline reconstruction. (c) Our method correctly reconstructs the facade and linear camera motion.

Figure 8: Cues and inferred labeling for the OATS sequence.

Figure 9: (a) The match matrix obtained using [23] on CUP.
(b) Timestamp matrix and (c) match matrix inferred from it
using our method (the reconstruction is shown in Figure 2e).
(d) Missing correspondence matrix and (e) match matrix in-
ferred from it using our method (reconstruction was folded).

with duplicate structure instances. For such cases, we have
proposed a new approach for inferring and removing er-
roneous match pairs, which can occur when the different
structure instances are matched based on visual similarity.

In summary, our main contribution lies in characterizing
the underlying geometric ambiguity in the problem and in
a new algorithm based on a unified probabilistic model and
sampling-based inference method that incorporates global
geometric reasoning with evidence from pairwise image
cues. We demonstrate results on challenging datasets with
up to 50% erroneous matches, on which a state-of-the art
SFM method produces incorrect "folded" reconstructions,
but our method produces correct reconstructions.
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