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Towards Privacy-Preserving Ego-Motion Estimation
using an Extremely Low-Resolution Camera

Armon Shariati1, Christian Holz2, and Sudipta Sinha2

Abstract—Ego-motion estimation is a core task in robotic
systems as well as in augmented and virtual reality applications.
It is often solved using visual-inertial odometry, which involves
using one or more always-on cameras on mobile robots and
wearable devices. As consumers increasingly use such devices
in their homes and workplaces, which are filled with sensitive
details, the role of privacy in such camera-based approaches is
of ever increasing importance.

In this paper, we introduce the first solution to perform
privacy-preserving ego-motion estimation. We recover camera
ego-motion from an extremely low-resolution monocular camera
by estimating dense optical flow at a higher spatial resolution
(i.e., 4x super resolution). We propose SRFNet for directly
estimating Super-Resolved Flow, a novel convolutional neural
network model that is trained in a supervised setting using
ground-truth optical flow. We also present a weakly supervised
approach for training a variant of SRFNet on real videos where
ground truth flow is unavailable. On image pairs with known
relative camera orientations, we use SRFNet to predict the auto-
epipolar flow that arises from pure camera translation, from
which we robustly estimate the camera translation direction. We
evaluate our super-resolved optical flow estimates and camera
translation direction estimates on the Sintel and KITTI odometry
datasets, where our methods outperform several baselines. Our
results indicate that robust ego-motion recovery from extremely
low-resolution images can be viable when camera orientations
and metric scale is recovered from inertial sensors and fused
with the estimated translations.

Index Terms—Deep Learning in Robotics and Automation,
Human-Centered Robotics, SLAM

I. INTRODUCTION

V ISUAL-Inertial Odometry (VIO) is the task of estimating
the state (i.e., position, orientation, velocity, etc.) of a de-

vice using only one or more cameras and Inertial Measurement
Units (IMUs). VIO is used for accurate ego-motion estimation
on autonomous mobile robots and movable devices, such as
Augmented and Virtual Reality (AR/VR) headsets and modern
smartphones. As such devices become ubiquitous, the fact that
they rely on one or more always-on cameras will potentially
be a major privacy concern for consumers, particularly when
used in their homes and workplaces.
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Fig. 1: Split screen visualization of images from the KITTI
dataset and low-resolution images (56×20 pixels) generated by
resizing the original images (896×320 pixels) to one-sixteenth
their size. We focus on developing techniques that can recover
ego-motion using cameras that capture such low-resolution
images as this will enhance the user’s privacy.

While previous work has analyzed privacy risks in robotics,
AR and VR [1], [2], [3], less attention has focused on develop-
ing privacy-preserving approaches suitable for such systems.
Only recently, Speciale et al. [4], [5] proposed new camera
pose estimation techniques based on privacy-preserving point
cloud map and image query representations, envisioning ways
to address a key privacy question in AR.

In this paper, we investigate a practical VIO approach
for privacy-preserving ego-motion estimation. Existing VIO
techniques rely on one or more IMUs and cameras, making
the camera the source of privacy concerns. Since visual motion
cues are indispensable for accurate state estimation in VIO and
are required for reducing drift, our approach is to drastically
decreases the camera’s pixel resolution to a level that conceals
the identity of people, written text, and the presence of other
sensitive objects. Maintaining a conventional field of view,
our approach operates on images with a resolution as low
as 56 × 20 = 1120 pixels, i.e., more than two orders of
magnitude fewer pixels than are in VGA images. In addition to
preserving privacy, low-resolution cameras provide additional
benefits such as low-noise sensing, higher frame rates, lower
power consumption, lower cost, and greater computational
efficiency, all of which are highly appealing for embedded
platforms.



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.2967307, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

Unfortunately, modern VIO methods designed for higher-
resolution images struggle with images composed of only
thousands of pixels. At this resolution, feature-based methods
can no longer find recurring discriminative keypoints across
multiple frames, while direct methods have their underlying
assumptions (small patches in the scene with sufficient texture
can be registered across images in the sequence) violated.
In order to address these shortcomings, we propose a deep
convolutional neural network (CNN) based approach that
directly computes pixel correspondences at a higher resolution
than that of the pair of input images. The design of our
network for computing Super-Resolved Optical Flow, which
we call SRFNet, involves combining two existing CNN archi-
tectures: SRResNet for image super resolution [6] and PWC-
Net for coarse to fine optical flow estimation [7]. SRFNet uses
SRResNet as a sub-network to super-resolve feature maps,
rather than images, in order to replace the multi-resolution
pyramid features in the original PWC-Net architecture. The
super-resolved features then pass directly to the warp and cost
volume layers to compute optical flow. We train SRFNet end-
to-end in a supervised setting on available optical flow datasets
using downsized input images at 1/16-th the original resolution
and predict optical flow at 4x super resolution, i.e., at 1/4-th
the original resolution.

Although SRFNet can predict high-resolution flow from
low-resolution videos, it needs more real-world ground-truth
optical flow data than what is easily available to achieve good
generalization. Therefore, we propose a weakly supervised
method that requires only videos with ground truth odometry
in order to train SRFNet for ego-motion estimation.

While our approach outlined in this paper ignores the
relative orientation between camera frames, we note that in
practice, we can include an IMU to obtain a rotation estimate
over small time windows in order to warp images with
2D homographies and simulate purely translational camera
motion. While this work focuses on the sole task of predict-
ing camera translation directions, in the future, we plan to
explore a complete approach that uses IMU measurements for
orientation and scale estimation as well.

We test SRFNet on the Sintel dataset [8] and KITTI
dataset [9] for optical flow and camera translation estimation
respectively. We present our network with downsized image
pairs at 1/16th of their original resolution (i.e., 48×24 pixels
and 56×20 pixels, respectively) as input, which produces flow
maps at 4x super-resolution (i.e., 192×96 pixels and 224×80
pixels, respectively). We show that SRFNet is more accurate
than several baselines that first super resolve the image and
then compute optical flow.

Contributions. (1) We introduce the privacy preserving ego-
motion estimation problem and propose key ideas towards
solving it. (2) We propose a new deep convolutional neural
network-based architecture we call SRFNet for estimating
high-resolution optical flow from low-resolution image pairs.
The key novelty to our approach is that instead of super-
resolving intensity images and then computing flow, SRFNet
bypasses the image super resolution task by super resolving
low-resolution feature maps and computing optical flow di-

rectly. (3) Finally, we propose to fine-tune SRFNet in a weakly
supervised setting using a novel auto-epipolar loss function.
This enables us to train SRFNet on large amounts of real,
unlabeled videos where optical flow ground truth is absent
and only camera poses are known.

II. RELATED WORK

In this section, we review existing work on image super-
resolution, optical flow and camera ego-motion estimation.
Image Super-Resolution. Classical methods for image super-
resolution either learn a better image interpolation function
using a database of low-resolution and high-resolution image
pairs [10] or solve an image registration problem given multi-
ple low-resolution images at sub-pixel misalignment [11], [12],
[13]. The latter framework was extended to jointly solve super-
resolution and optical flow on image sequences [14] and later
on video using probabilistic formulations [15]. Modern super-
resolution methods are based on CNNs [16], [6], [17], [18]
with U-Net architectures, i.e., with symmetric encoder and
decoder layers connected via skip connections. SRCNN [16]
used bicubic upsampling whereas latter methods learn the
upsampling filters. SRResNet [6] included a ResNet backbone
in their model and later incorporated adversarial training and
efficiency [18], [17].

Unlike traditional super-resolution methods, we predict op-
tical flow at a higher spatial resolution instead of image
intensities. While it is possible to super-resolve the images
and then compute flow from them, we show that it is better
to bypass image super-resolution and directly train the model
to predict high-resolution flow from low-resolution images.

Optical Flow. Classical methods for optical flow proposed
by Horn and Schunk [19], Lukas and Kanade (LK) [20]
are optimization-based and rely on brightness constancy con-
straints alongside suitable regularization terms to compute
sparse, semi-dense or dense flow. Recently, revived interest
has been in the inverse compositional LK method [14] in the
context of CNNs and learning [21]. When optical flow arises
from a camera moving within a static scene, flow estimation is
often performed in conjunction with camera motion estimation
to compute epipolar flow [22] or multi-frame scene flow [23].
Honnegar et.al [24] proposed an efficient real-time optical flow
method and a FPGA implementation suitable for deployment
onboard small UAVs and mobile robots.

Recently, many end-to-end CNN architectures have been
proposed for optical flow estimation, including FlowNet [25],
SpyNet [26], MirrorFlow [27], PWC-Net [28], and its exten-
sion [7] to name a few. U-Nets have also been trained to
predict camera motion and depth, such as in DeMoN [29]
and SfMNet [30]. Our CNN-based model closely resembles
PWC-Net and uses a coarse-to-fine framework as well. The
main difference is that in the new architecture, in comparison
to PWC-Net, the coarse-to-fine feature pyramid computations
are reversed (starting from a low-resolution input to a higher-
resolution output, where optical flow is computed).

Ego-motion estimation. Following Nister et al.’s work [31] on
autonomous ground vehicles, numerous VO and visual SLAM
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algorithms have been recently proposed – SVO [32], [33],
DSO [34], PTAM [35], ORB-SLAM [36], LSD-SLAM [37],
to name just a few. In parallel, robust filter-based VIO methods
performing sensor fusion were used in real-time systems, mo-
bile devices, and other resource constrained settings [38], [39].
Other real-time visual-inertial SLAM, such as OKVIS [40],
VINS-Mono [41] and others [38], [42], represent the state-
of-the-art in this domain and were recently benchmarked for
use on UAVs [43]. These methods are often categorized as
either direct [44], [37], [34], indirect [31], [36], [39], or
a hybrid [35], [32], [33], [42]. Direct methods minimize an
objective based on photometric error, i.e. by directly compar-
ing image intensities. Indirect feature-based methods minimize
geometric distance between observed and transformed feature
points. Unfortunately, feature-based methods cannot find well
localized and repeatable 2D keypoints in images with resolu-
tion as low as 56×20 pixels, thereby adversely affecting the
subsequent steps. Direct methods also struggle at this resolu-
tion, since single pixels do not correspond to small patches in
the scene anymore. In contrast, our approach combines super
resolution and optical flow estimation to recover fine pixel
correspondence and then uses geometric constraints similar
to the feature-based methods to recover camera motion. The
dense optical flow estimated by our method are shown to be
sufficiently accurate for computing relative camera motion.

III. APPROACH

We describe our approach towards ego-motion estimation
using an extremely low-resolution camera in two parts. The
first describes our proposed SRFNet architecture while the
second then explains our weakly supervised method to fine-
tune our model for recovering camera ego-motion.

A. Optical Flow Estimation

The design of our SRFNet architecture builds on both, the
PWC-Net [28] and the SRResNet [6] CNN architectures, both
of which achieve state-of-the-art performance for their respec-
tive tasks. Although PWC-Net is designed for estimating dense
optical flow, whereas SRResNet computes single image super
resolution (SISR), we demonstrate how these architectures
may be integrated into a hybrid network for directly computing
super-resolved optical flow. See Figure 2 for an overview.
Next, we briefly review PWC-Net [28] and SRResNet [6]
before describing our architecture.

1) PWC-Net: The design of PWC-Net, as illustrated in
Figure 2a, is inspired by the well-established principle of
traditional coarse-to-fine optical flow pipelines [45]; namely
pyramidal processing, warping, and the use of a cost volume
for computing similarity between image regions. In PWC-Net,
these operations take place in feature space as opposed to
image space. Once the underlying Feature Pyramid Extractor
(FPE), highlighted by the red box in Figure 2a, produces a
series of feature maps with decreasing resolution, the warping,
cost volume computation, and optical flow estimation also
proceeds in a coarse-to-fine fashion.

First, features from the second image are warped using the
up-sampled flow from the previous iteration at the coarser

level of the pyramid. Second, the network computes a cost
volume over all corresponding neighborhoods of radius d in
the warped and template feature maps. Third, the up-sampled
flow, the cost volume, and the feature map from the first
image are concatenated into a single feature map, which is
then passed through another series of convolutional layers that
predicts the flow at the current level of the pyramid. Finally,
once the output resolution flow is estimated, it passes through
one last set of convolutional layers with a large receptive field,
which is designed to refine the flow by incorporating global
flow context. This refinement step, however, is optional. For
details regarding the architectural specifics of all these layers,
please refer to [28].

The purpose of pyramidal processing in optical flow es-
timation is to effectively mitigate the aliasing problem that
occurs due to the fact that image sequences typically have
temporal sampling rates lower than that which is required
by the sampling theorem to uniquely reconstruct the contin-
uous signal. By filtering high-frequency signals at each level
through smoothing and spatial down-sampling, pixel velocities
become slower and more stable at coarser scales as spectral
replicas disappear. In contrast to this problem, however, pixel
velocities at our input resolution are so slow that frame-
to-frame displacements are mostly sub-pixel, which leads
to a “bleeding” effect that inevitably causes the brightness
constancy assumption [20] to be violated. An insufficiently
slow spatial sampling rate is the main issue.

2) SRResNet: Although the SRResNet architecture [6] con-
sists of relatively simple components, it demonstrates strong
performance in maximizing peak signal-to-noise ratio (PSNR)
– a common metric for measuring image reconstruction qual-
ity. The network begins by transforming the low-resolution
image to feature space using a series of K residual blocks [46].
Following this transformation, the resulting feature map is then
interpolated using a series of efficient sub-pixel convolutional
layers, as described in [18], whereby each layer increases the
spatial resolution of the map by a factor of 2. During training,
the network minimizes a mean-squared error loss, which
implicitly maximizes PSNR. However, although it is a precise
metric for reconstruction quality, a higher PSNR value does
not necessarily imply a realistic image. While an adversarial
loss can produce more visually appealing results, we are
interested in computing accurate optical flow. In Section V,
we examine the impact of providing super-resolved images
from a network trained only to maximize PSNR. However,
our primary interest in the SRResNet architecture is its internal
production of a series of feature maps with increasing spatial
resolution as it tries to generate a super-resolved image from
a low-resolution input.

3) SRFNet: We will now describe the proposed SRFNet
model, which is illustrated in Figure 2b. It directly computes
super-resolved optical flow and is designed by combining
components from both the PWC-Net and the SRResNet ar-
chitectures. Our main idea is to use a modified SRResNet
sub-network to build a feature pyramid. This sub-network
replaces the feature pyramid extractor (FPE) in the original
PWC-Net network. Unlike the FPE which produces lower-
resolution features with each additional convolutional layer,
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Fig. 2: Overview of CNN architectures for (a) PWC-Net [28] and (b) our SRFNet model. PWC-Net uses a conventional feature
pyramid, while SRFNet’s feature pyramid is built in reverse (red) by upsampling lower-resolution feature maps.

our SRResNet sub-network produces a higher-resolution fea-
ture map with each additional sub-pixel convolutional layer.
In essence, the feature maps in SRFNet are computed in
reverse order with respect to those in PWC-Net. We perform
an initial transformation of the low-resolution input image
using K = 16 residual blocks as in the original SRResNet
model but this is not shown in Figure 2b for simplicity.

Other than removing the final convolutional layer that
computes the final super-resolved image, our sub-network
differs from SRResNet in one more way. SRResNet uses a
constant number of feature channels following each sub-pixel
convolutional layer, but we decrease the number of feature
channels by a factor of 2 (as the spatial resolution increases
by a factor of 2). This is done so as to match the dimensions
of the feature maps generated by PWC-Net’s FPE. Our main
difference from the original PWC-Net architecture, besides the
removal of the FPE itself, is that the feature pyramid has three
levels as opposed to six. Given a set of L = 3 feature maps,
where each contains 64, 32, and 16 channels, respectively, our
network proceeds in the same coarse-to-fine manner as the
PWC-Net model described previously. Also note that our cost
volume computation utilizes a neighborhood size of d = 4 for
all levels of the feature pyramid, which lets our network handle
displacements of up to 64 pixels at the output resolution.

In order to train our SRFNet architecture to predict super-
resolved optical flow under general motion, we follow the
same supervised training procedure using the same loss func-
tions and hyper-parameters as described in [28]. Furthermore,
letting Θ denote the set of weights in our SRFNet model and
wl denote the flow field at level l in the pyramid, we use the
following multi-scale loss for initial training.

L(Θ) =
L∑

l=l0

αl

∑
x

‖wl
Θ(x)−wl

GT ‖2 + γ‖Θ‖2, (1)

Subsequently, we fine-tune with the following robust loss.

L(Θ) =
L∑

l=l0

αl

∑
x

(
|wl

Θ(x)−wl
GT |+ ε

)q
+ γ‖Θ‖2. (2)

B. Ego-Motion Estimation

Our ultimate goal is to compute ego-motion from real-world
videos from a moving camera. While such videos are abundant
and easy to obtain, the associated dense ground truth flow
for each frame is not. This motivated us to devise a training
method that does not rely on dense flow supervision and
circumvents the need for ground truth optical flow.

When a camera moves in a static scene, the induced optical
flow must satisfy the epipolar constraints over image pairs and
is often referred to as epipolar flow [22]. Therefore, one could
consider using known epipolar geometry as a source of weak
supervision to fine-tune our model to compute epipolar flow.
However, at extremely low resolutions, the effect of camera
rotation and translation on pixel intensity changes between
subsequent frames can be difficult to disambiguate.

On the other hand, if we assume our frame-to-frame ro-
tation can be accurately estimated over a short window –
an assumption we would expect to be valid for an IMU
– we can compensate for the rotational component of the
flow by warping the second image using the homography
H = KRTK−1. Given that the fundamental matrix for a pair
of cameras can be expressed as

F = K−T [t]×RK
−1 = [e]×(KRK−1), (3)

where e corresponds to the template epipole, and t and R
correspond to the relative translation and rotation between
the two, the new fundamental matrix corresponding to the
rotation-compensated image and the template image is reduced
to F ′ = [e]×. And since e = Kt, estimating the two parameter
epipole location amounts to estimating the remaining transla-
tional component of the flow up to some scale factor (though
scale too, like rotation, may also be provided by an IMU).
This is a special case of epipolar flow called auto-epipolar
flow [47], which is induced by a purely translation relative
motion between camera pairs.

This leads us to the following loss function for training,

L(Θ) =
L∑

l=l0

αl

∑
x

arccos
(
n̂(x)T ŵl

Θ(x)
)

+ γ‖Θ‖2, (4)
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where n(x) = e − x and ˆ notation indicates a vector that
has been normalized to have unit length. This auto-epipolar
loss function minimizes the angular difference between the
direction of the predicted flow vector at each pixel ŵl

Θ(x) and
the direction of the ground truth flow vector which would arise
given a relative translation of t between camera frames n̂(x).
Notice that supervision for this loss, n̂(x), can be obtained
from ground truth odometry alone, which is much easier to
obtain than dense flow maps. Also observe that we are only
concerned with accurately estimating the flow orientation and
not magnitude. Recall that since the flow vectors must satisfy
our epipolar constraints, F = [e]× in this case, all flow
vectors corresponding to static parts of the scene will end
up pointing to the epipole. Therefore, given a dense flow
map output by our network trained in this fashion, we can
recover the epipole location by finding the approximate point
of intersection shared by most pairs of flow vectors using
a 2-point RANSAC with an angular difference threshold of
2◦ to filter outliers. Finally, in order to obtain the translation
direction we simply back-project the the epipole position using
the camera intrinsics matrix K.

IV. IMPLEMENTATION DETAILS

Since our SRFNet architecture contains two separate sub-
networks designed for different tasks, training SRFNet re-
quires multiple stages of pre-training and fine-tuning on
various datasets. The order in which different datasets are
used during training roughly follows that of [28]. We use an
NVIDIA Tesla P100 GPU in our experiments.

We begin by training a 3-level PWC-Net model from scratch
on randomly cropped images of size 448×284 from the
FlyingChairs dataset [25] for 200K iterations using a learning
rate of 10−4, mini-batches of size 8, and the loss function
described in Equation 1. We then reduce the learning rate
by a factor of 2 and continue training for another 100K
iterations. After this intial pre-training is complete, we fine-
tune our model on randomly cropped (768×384) images from
the FlyingThings3D dataset [48] for 400K iterations using a
learning rate of 10−5, mini batches of size 4, and the same loss
described in Equation 1. We call this model PWC-Net-T. We
use the robust loss described in Equation 2 in the next round
of fine-tuning, where we train for 50K iterations on randomly
cropped (768×384) images from the Sintel dataset [8] using a
learning rate of 10−5 and mini batches of size 4. We call the
resulting model PWC-Net-S. We further fine-tune it on random
crops (896×320) from the KITTI Flow dataset [49] for 20K
iterations using a learning rate of 10−5, mini batches of size
4, and the robust loss from Equation 2. We call this model
PWC-Net-K. The values of all unspecified hyper-parameters
can be found in [28].

In parallel, we train our modified SRResNet architecture
from scratch on FlyingChairs, but now using images randomly
cropped to (256×256) for 400K iterations with a learning rate
of 10−5. We call this model SRResNet-C. We skip training
SRResNet on FlyingThings3D and directly fine-tune it on
Sintel and KITTI for the same number of iterations and using
the same learning rate and mini batch size as those used for

training PWC-Net-S and PWC-Net-K, respectively, but using
256×256 crops for SRResNet-S and SRResNet-K. The inputs
to all our SRResNet models are produced by down-sizing these
(256×256) crops (used as the training targets) by a factor of
4x. Finally, all our SRResNet models are trained using mean-
squared loss.

We now describe the training procedure for our SRFNet
model. We start by initializing the super resolution layers of
our first SRFNet model, in particular the residual blocks and
sub-pixel convolutions, using the weights from our SRResNet-
C model. Similarly, we initialize the optical flow estimation
and context layers of our model with weights from our PWC-
Net-T. Note that the warping and cost volume layers have
no parameters and thus are identical for all models. Given
this initial SRFNet model, we further train the model on 16x
downsized random (768×384) crops from the FlyingThings3D
dataset for first 60K iterations using a learning rate of 5×10−5

and then for an additional 300K iterations using a learning
rate of 10−5. We use the same multi-scale loss and batch
size as those used for training PWC-Net-T. However, the
key distinction is that we do not back-propagate through the
optical flow and context layers. This is because while these
weights have already been exposed to the FlyingThings3D
images, the weights within the super resolution layers have
not. This model is then further trained in two more rounds of
end-to-end fine-tuning; first on Sintel and the second on KITTI
Flow, while back-propagating through all layers. We use the
same hyper-parameters, iterations, and losses as those used for
training PWC-Net-S and PWC-Net-K, while downsizing the
random crops by a factor of 16x. Using the same convention,
we call these models SRFNet-S and SRFNet-K. Note since
Sintel and KITTI Flow do not provide ground truth flow for
testing, we randomly select 100 and 30 frames from Sintel
and KITTI respectively, to be held out for future evaluation.

Finally, our last model, SRFNet-EK, is trained using our
proposed weakly supervised loss function. We take sequences
0–3 from the KITTI VO dataset [9] and partition them into
windows of w = 4 while skipping every s = 1 frames. Using
the provided ground truth pose estimates, we compensate for
all rotations with respect to the first frame in a given window
by applying the homography Hi = K(RT

1 Ri)
TK−1 to all the

images within the window, where i denotes the index of each
frame following the first. We then obtain our ground truth
translation vectors by re-expressing the translation component
of the given pose vector, which is provided in the global
frame, with respect to the first camera frame. Note that the
epipoles needed for supervision are obtained by projecting
these translations to the image plane, which uses the camera
intrinsics. After creating this dataset, we train our model for
90K iterations using a learning rate of 10−5 and mini-batches
of size 8. We use the same value of α as that used for training
all PWC-Net models.

V. EXPERIMENTAL RESULTS

Since our SRFNet model is useful for two different tasks,
i.e. general optical flow estimation and camera ego-motion
estimation, the following experiments are designed to assess
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(a) Original Image (b) Input Image (48×24 px.) (c) Ground Truth Flow (d) SRFNet-S (Ours)

(e) PWC-Net-S, No SR (f) PWC-Net-S, Bicubic SR (g) PWC-Net-S, SRResNet-S (h) PWC-Net-S, Oracle SR

Fig. 3: Qualitative results for super-resolved optical flow estimation on an image pair (only one is shown) from Sintel. Our
SRFNet model outperforms all the baselines and does almost as well as PWC-Net-S Oracle at 4x super resolution.

Fig. 4: The ground truth camera trajectories for two KITTI
sequences and trajectories by a least squares method that uses
the predicted translation directions as well as the ground truth
orientation and scale information (see text for details). The
low position drift errors in the two sequences confirm that our
predicted translation directions are quite accurate.

TABLE I: Ablation experiment comparing different factors of
flow super resolution on Sintel. All units in pixels.

Oracle Baselines Ours
SR Factor 1x 2x 4x 4x

Flow Method PWC-Net-S SRFNet-S
AEPE 1.50 0.99 0.74 0.86

the efficacy of our method on both tasks. On average, a single
forward pass through the network takes about 10 ms. All
the methods in the experiments perform 4x super resolution
(of an image or flow map depending on the method). This
resolution was selected based on an ablation study (see Table
I for the results). We present our PWC-Net-S model with pairs
of images from the Sintel dataset [8] at three different scales –
which we refer to as “oracle super resolution” – and measure
the average endpoint error of the predicted flow map. The first
scale is at the lowest input resolution (48×24), which we refer
to as 1x. There, we are measuring the effect of not doing super
resolution. The second and third scale is at twice (96×48)
and four times (192×96) the original resolution, respectively.
We obtain image pairs by downsizing (768×384) center crops
from the original images. Our results show that super resolving
the input to 4x its original size is more accurate than 1x and
2x. We did not try 8x, since at 4x we already obtain reasonably
accurate flow with respect to the (768×384) images.

(a) Original Frame Low Resolution Frame

(b) PWC-Net-K, No SR

(c) PWC-Net-K, Oracle SR

(d) SRFNet-K (Ours)

(e) SRFNet-EK (Ours)

Fig. 5: Qualitative results for epipole prediction on rotation-
compensated image pairs from the KITTI dataset. Predicted
flow maps (left) and inlier masks (right) are shown for each
method. The true and predicted epipoles are shown overlaid
on the flow maps using red and blue dots respectively.

TABLE II: Comparison of different baselines for 4x flow super
resolution on Sintel. All units in pixels.

Baselines Ours
SR Method None Bicubic SRResNet-S Oracle

Flow Method PWC-Net-S SRFNet-S
AEPE 1.50 2.18 1.71 0.74 0.86

A. Super-Resolved Optical Flow Estimation

To study the performance of our integrated SRFNet model
for both super resolution and optical flow estimation, we
evaluate our system’s performance on its ability to estimate
flow from simulated low resolution images (48×24) from the
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TABLE III: Comparison of different methods for predicting frame to frame translation

Baselines Ours
SR Method - Bicubic SRResNet-(S / K) Oracle
Flow Model PWC-Net-(S / K) SRFNet-S SRFNet-K SRFNet-EK
∆θ (deg) 6.09 / 6.04 34.91 / 4.73 30.66 / 4.06 2.36 / 2.32 3.5 2.86 2.57
∆d (m) 0.070 / 0.074 0.446 / 0.034 0.384 / 0.033 0.019 / 0.018 0.033 0.023 0.019
∆d (%) 10.44 / 10.39 58.42 / 8.03 51.53 / 6.94 4.01 / 3.94 6.00 4.87 4.38

Sintel dataset [8]. As in the ablation experiment, these images
are obtained by downsizing (768×384) center crops of the
original images. We compare our model to four different non-
integrated baselines, each of which utilizes a separate method
for SISR whose output is then provided as input to PWC-Net-
S in order to compute optical flow. Our quantitative results
measuring average endpoint error are presented in Table II,
while qualitative results are shown in Figure 3.

The first method, which we expect to have the worst
performance, simply computes optical flow at the input reso-
lution. Since all the methods described below are evaluated
at the 4x (192×96) scale, the output flow map must be
interpolated to the higher resolution, which we do using a
bilinear kernel. The second and third baseline involve super
resolving the input images with a bicubic kernel and an
SRResNet-S model, respectively, before computing the flow
map. We expect these methods to outperform the first model,
however, under-perform when compared to our final “oracle”
baseline, which directly computes flow at the ground truth
super resolved image at (192×96). The oracle baseline serves
as an upper bound of performance for our method.

As can be seen in Table II, our integrated model indeed
outperforms the first three baselines by a factor of 2, while
only suffering a loss of .1 average pixel error compared
to the expected upper bound. To our surprise however, the
first baseline, which utilizes no super resolution at the input,
outperforms the second and third. These results along with
those of our initial ablation study indicate that while higher
resolution images yield more accurate flow estimates, standard
SISR methods are not consistent across consecutive video
frames and that hurts the flow accuracy.

B. Camera Translation Estimation

In this set of experiments, we aim to understand how well
our proposed SRFNet model performs for our ultimate task of
ego-motion estimation. We test three of our models, SRFNet-
S, SRFNet-K, and SRFNet-EK, against different SISR meth-
ods used in tandem with a PWC-Net model. The baselines
selected for comparison parallel those used in the general
optical flow experiments, whereby for super resolution we
examine the use of no super resolution, bicubic interpolation,
and different SRResNet models. We follow the same procedure
of downsizing center crops in order to simulate our low
resolution inputs. The only difference is that we instead start
with a crop size (896×320) and resize them to (56×20). For
evaluation, we use rotation-compensated KITTI sequences 4–
10 [9], held out during the training. The quantitative results of
our experiments are shown in Table III while some qualitative
results are shown in Figure 5.

The performance of each super resolution method and flow
model combination, as well as each of our integrated models,
is measured based on three different metrics for frame-to-
frame translation estimation. Recall that since we assume that
frame-to-frame rotation is known, the accuracy of complete
ego-motion estimation depends entirely on the accuracy of the
translation estimates. The first metric is the average angular
difference between the direction of the ground truth translation
vector and the direction of our predicted translation vector.
The second metric is the average endpoint error of the 3D
translation vector in meters. Observe that this metric is dif-
ferent from the 2D average endpoint error in pixels used in
the previous experiments. Finally, the third metric is the same
average endpoint error, however scaled to a percentage in order
to account for varying translation magnitudes. Note that we
scale our predicted translation directions with the ground truth
length for evaluation.

Training the models on real world KITTI Flow [49] yields
far better performance as compared to those trained on syn-
thetic Sintel data [8] (see Table III). While this is to be
expected, it is interesting to note the degree of improvement
exhibited by the PWC-Net models which rely on bicubic
interpolation and SRResNet for super resolution when trained
on KITTI. In contrast to the results of the previous general
optical flow experiment, when trained on the real world data,
these two baselines outperform the initial approach of using
no super resolution at the input and instead upsampling the
output flow map. This suggests that while the general optical
flow estimation and ego-motion estimation tasks are closely
related, there is some aspect to the latter which makes the
idea of super resolving the input images still somewhat viable.
Given that, our integrated SRFNet models still outperform the
three naive baselines. Notice that even when trained on Sintel,
our SRFNet-S model still outperforms the baseline methods
that use models fine-tuned on KITTI Flow. Furthermore, the
average endpoint error of SRFNet-K is only < 1% smaller
than the oracle.

Ultimately, the result best demonstrating the efficacy of
our method are those for our weakly supervised SRFNet-EK
model. We see that despite not having ground truth pixel-
wise flow for training, our model performs almost as well as
the oracle. Thus, the expensive process of collecting accurate
dense flow maps can be avoided altogether. It is interesting
to note however (see Figure 5), that SRFNet-EK no longer
produces flow maps with identifiable scene elements as only
flow orientation was used in the training objective.

Finally, we compute full camera trajectories to test the
accuracy of our translation estimates. Figure 4 shows the
result of a linear pose-graph optimization over the transla-
tional measurements. For each frame, we have three linear



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.2967307, IEEE Robotics
and Automation Letters

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

constraints, one to each of its three consecutive frames. As our
network currently predicts only the translation direction, we
utilize ground truth scale and orientation information during
the trajectory reconstruction step. The estimated trajectories
for sequences 5 and 7 from the KITTI dataset have 4.28m
and 2.57m position drift over 2.2km and 0.69km respectively.

VI. CONCLUSION
In summary, we present here the first viable approach

towards developing a real-time privacy-preserving VIO system
by using a CNN model that can accurately estimate the
direction of camera translation from extremely low-resolution
image pairs – within which faces, text, and other sensitive
information is indiscernable. Our results show that our model
is more effective compared to methods that first super-resolve
the images and then compute optical flow. In the future, we
aim to develop a complete VIO system which utilizes an actual
low-resolution camera and an IMU for live orientation and
scale estimation as well.
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