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Abstract

In this paper we discuss the problem of estimating parameters of a calibration model for
active pan-tilt-zoom cameras. The variation of the intrinsic parameters of each camera over
its full range of zoom settings is estimated through a two-step procedure. We first deter-
mine the intrinsic parameters at the camera’s lowest zoom setting very accurately by cap-
turing an extended panorama. The camera intrinsics and radial distortion parameters are
then determined at discrete steps in a monotonically increasing zoom sequence that spans
the full zoom range of the camera. Our model incorporates the variation of radial distor-
tion with camera zoom. Both calibration phases are fully automatic and do not assume
any knowledge of the scene structure. High-resolution calibrated panoramic mosaics are
also computed during this process. These fully calibrated panoramas are represented as
multi-resolution pyramids of cube-maps. We describe a hierarchical approach for building
multiple levels of detail in panoramas, by aligning hundreds of images captured within a 1-
12X zoom range. Results are shown from datasets captured from two types of pan-tilt-zoom
cameras placed in an uncontrolled outdoor environment. The estimated camera intrinsics
model along with the cube-maps provides a calibration reference for images captured on
the fly by the active pan-tilt-zoom camera under operation making our approach promising
for active camera network calibration.
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1 Introduction

The use of active pan-tilt-zoom (PTZ) cameras in wide-area surveillance systems,
reduces the actual number of cameras required for monitoring a certain environ-
ment. During operation, each PTZ camera can act like a high-resolution omnidi-
rectional sensor, which can potentially track activities over a large area and capture
high-resolution imagery around the tracked objects. While omnidirectional cameras
simultaneously observe a scene with a large field of view (FOV) often from a single
viewpoint, they typically capture low-resolution images and have a limited range
of scale. High-resolution panoramic cameras need specialized hardware and can be
extremely expensive. However environments that are static or where events hap-
pen around a small region, do not require simultaneous imaging. For static scenes,
multiple images captured over time can be aligned and composited into a complete
panorama using image mosaicing algorithms [1,12,13]. PTZ cameras by virtue of
their large zoom range can view a scene at a greater range of scale compared to an
omnidirectional camera. At its finest scale, it can capture high-resolution imagery
whereas a large range of pan and tilt gives it a large virtual FOV. Hence the PTZ
camera combines the best of both worlds at an affordable cost.

A network of such active cameras could be used for 3D modeling of large scenes
and reconstruction of events and activities within a large area, provided pixels cap-
tured from an active camera under operation could be accurately mapped to visual
rays in 3D space. This paper describes a fully automatic method for calibrating
such a model for pan-tilt-zoom cameras that does not require physical access to the
cameras or the observed space. A model for the camera’s intrinsic parameters is
estimated from images captured within its full range of pan, tilt and zoom config-
urations. Our method is inherently feature-based, but does not require a calibration
object or specific structures in the scene.

Past work on active camera calibration has mostly been done in a laboratory setup
using calibration targets and LEDs or at least in a controlled environment. Some
of these include active zoom lens calibration by Willson et. al. [14,9,15], self-
calibration from purely rotating cameras by deAgapito [4], and more recently pan-
tilt camera calibration by Davis et. al. [6]. Our approach towards zoom calibration is
simpler than that of Wilson [15] who computed both focal length and radial distor-
tion at many different zoom settings [15] and is similar to that of Collins et. al. [5],
who calibrated a pan-tilt-zoom active camera system in an outdoor environment.
However we extend the lens distortion model proposed by Collins [5] who assumed
constant radial distortion, estimated it only at a particular zoom level and modeled
its variation using a magnification factor. We actually estimate the radial distortion
caused by optical zoom of the camera, the effect of which varies with camera zoom.
Our method computes the intrinsic parameters of a PTZ camera from images taken
by the rotating and zooming camera in an unknown scene. The intrinsic parame-
ters at the lowest zoom are first computed by estimating homographies between
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Feature VB-C10 SNC-RZ30

Pan Angle Range ������� ��� �
	���� �
�
Tilt Angle Range �
����� � � ���
��� � �

Zoom Range / Steps �
�
����	�	���� ���
�����
�������
fov at ��� 	���� �
� 	���� �
�

fov at ������� ��� � � ��� � �
Potential # pixels 1 Gpixels 3 Gpixels

Fig. 1. Cube-map Mosaic of 84 images computed from a PTZ Camera mounted on a build-
ing-top. (a) mapped on a cube.(b) 6 faces unfolded on a plane. PTZ cameras used in our
experiements - (c) Sony SNC-RZ30 (d) Canon VB-C10. See table for specifications.

multiple images acquired by a rotating camera. Using bundle adjustment [11], the
homography model is extended to take radial distortion into account and obtain a
complete calibrated panorama of the scene with sub-pixel alignment error (see Fig-
ure 1). We next use an image sequence from the full zoom range of the camera to
estimate the variation of its intrinsics with zoom. In our calibration model, an active
PTZ camera is a virtual, static omnidirectional sensor. Next multiple images cap-
tured at increasing zoom levels are aligned to the calibrated panorama to generate
a multi-resolution cube-map panorama.

We presented preliminary work on PTZ camera calibration and multi-resolution
cube-map generation in [2] and [3] respectively; this paper contains a comprehen-
sive description of the work and shows its importance for active PTZ camera cal-
ibration. We do not address the extrinsic calibration of a PTZ camera network;
the methods for conventional camera network calibration as proposed in [16,17],
could be extended to PTZ cameras. The paper is organised as follows. Section 2
introduces the camera model while Section 3 explains the calibration procedure
in detail followed by experimental results. Section 4 addresses the construction of
multi-resolution panoramas using a method that overlaps with the calibration algo-
rithm. We conclude with discussions and scope for future work in Section 5.

2 Theory and Background

2.1 Camera Model

We chose to use a simple pan-tilt-zoom (PTZ) camera model and make a tradeoff
for simplicity over exactness in our choice, similar to [4,5]. Our model assumes that
the center of rotation of the camera is fixed and coincides with the camera’s cen-
ter of projection. More general camera models have been proposed [6,14] for PTZ
cameras that violate this assumption. Davis and Chen [6] model the pan and tilt
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(a) (b)

Fig. 2. (a) The pin-hole camera model. (b) Camera rotation and zoom.

rotations to be occuring about arbitrary axes in space; they estimate them in their
calibration method. However when cameras are used outdoors or in large environ-
ments, the deviation of the center is negligible compared to the average distance of
the observed features, which are typically distant. Our experiments with the Canon
VB-C10 and Sony SNC-RZ30 surveillance cameras (refer to the table in Figure 1
for relevant specifications) have shown this assumption to be reasonably accurate.

In the pin-hole camera model (see Figure 2(a)) for the perspective camera, a point�
in  "! projective space # � projects to a point $ on the %&! projective plane # �

(the image plane). This can be represented by a mapping ')(*# �,+ # � such that$.-/# � , # being the  1032 rank-3 camera projection matrix. This matrix # can
be decomposed as shown in Eq. 1.

#4-6587:9 ;<9>=@? 5A-
BCCCCCD
E ')FHG�IJ 'KG�LJMJON

P�QQQQQR (1)

where 5 represents the camera intrinsics while 9 and = represents the camera
position and orientation with respect to the world coordinate system. The matrix 5
can be expressed in terms of E , F , ' , GSI and G�L (see Eq. 1), where E and F are the
camera’s T : U pixel aspect ratio and skew respectively; ' its focal length measured
in pixel in the vertical direction; (GSI ,G�L ) its principal point in the image. Since we
model the camera’s pan and tilt movements by pure rotations about its projection
center V , we choose it as the world origin and set =W-6X . Our goal is to estimate
the unknown parameters of a model for 5ZY\[^]_[ ` that provides the intrinsics for any
(pan -)G ; tilt -ba ; zoom -dc ) configuration within the admissible PTZ ranges of the
camera. The principal point (GeI ,G�L ) and focal length ' depend only on the camera
zoom c . Thus they are denoted by ' � and (G �I ,G �L ) respectively. E and F , (we assumeFf- J

) are constants for a particular camera. Hence the unknown intrinsics we wish
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to estimate are of the following form.

5 Y\[ gh[ � -b5 ` -
BCCCCCD
E ' � FiG �IJ ' � G �LJ J N

P�QQQQQR (2)

Most cameras deviate from a real pin-hole model due to radial distortion; this ef-
fect decreases with increasing focal length. The  "! point

�
which in the pin-hole

model projects to $ = 7
jT8jU N ?lk actually gets imaged at ( Tnm , Uom ) due to the radial dis-
tortion function p qsrutKv rwt (see Eq. 3). jx is the radial distance of $ from the
center of distortion ( Tny , Uoy ) and z<{|jxo} is a radially symmetric distortion factor. ~ � and~ � are the coefficients of radial distortion. The radial distortion model at zoom c ,p ` is parameterized by {�~ � ��� ~ ��@� T �y � U �y } , the respective parameters at zoom c . Based
on properties observed by Wilson [14], we constrain the principal point {�G �I � G �L } to
be the same as the distortion center {�T �y � U �y } in our camera model.BCD TSmU&m

P�QR -bzW{�jx"} BCD jT jU
P�QR � jx -�� jT ��� jU � � zW{ x"} - N � ~ � x � � ~ � x 	 (3)

We determine calibration over the full zoom range by estimating 5 ` and p ` at
equal steps of zoom on a logarithmic scale, between c � and c�����I , the minimum
and maximum optical zoom levels respectively. Once all the parameters have been
estimated at these discrete zoom levels, the complete intrinsics at any zoom can be
obtained by piecewise linear interpolation.

2.2 Rotating and Zooming Cameras

Here we consider the case of a rotating and zooming camera. Let $ and $�� be the
images of

�
taken at two different instants by a camera that is either zooming or

rotating (see Figure 2(b)). These points, $ and $ � are related to
�

as $�-65 [ 94= ] �
and $ � -65 � [ 9 � = ] � where =W-6X . Hence $ � -65 � 9 � 9Z�e��5.�e��$ . In our model, the
intrinsics remain the same for pure rotation at constant zoom; hence this equation
reduces to $ � -�5Z91������5 �e� $ where 9�������-�9 � 9 �e� represents the relative camera
rotation about its projection center between the two views and 5 is the camera
intrinsic matrix for that particular zoom level. Similarly for a camera zooming in a
fixed direction with a fixed projection center, $ � -45 � 5 �e� $ . These homographies
are represented by ������� and �u������� (see Eq. 4).

�Z������-b5Z91������5 �e� �u��������- 5 � 5 �e� (4)
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Fig. 3. Overview of calibration: (1) Intrinsics Calibration at minimum zoom. (2) Zoom Cal-
ibration. (a) Images ¡�¢|£
¤ captured during rotation at fixed zoom and the mosaic computed
with respect to ¢�¥ . (b) Horizontally and vertically adjacent images in the grid shown with
the corresponding matches. Feature lists built from features visible in multiple images are
illustrated. (c) Successive images from a zoom sequence shown with the feature matches.

3 Camera Calibration

Our calibration algorithm works in two phases. The camera intrinsics are first esti-
mated at the camera’s minimum zoom and then computed for an increasing zoom
sequence. Figure 3 gives a overview of the whole procedure. The notation used here
is as follows. ¦¨§ £
© are images acquired by the rotating camera. ¦ª� £«© and ¦\¬�­ ©
represent the homographies between horizontal and vertical adjacent pairs in the
image grid. ¦ª® £�© represents the homographies with respect to a reference image § ¥ .
The optimal homographies ¦°¯® £�© , computed through Bundle I, are used to obtain
an approximate intrinsics 5 � � at the lowest zoom. ¦±¯9 © represents camera rotation
matrices and p � stands for the radial distortion model at zoom level c .
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3.1 Computing Intrinsics at Minimum Zoom

The first step towards calibration is determining the intrinsics at minimum zoom.
This involves computing homographies ������� between images taken from a rotat-
ing camera (see Eq. 4). During a capture phase, images are acquired in a spherical
grid (see Figure 3(a)) for certain discrete pan and tilt steps. Next the homogra-
phies between every adjacent horizontal pair of images, � £ and between every
adjacent vertical pair, ¬�­ in the grid are robustly computed. Harris corners ex-
tracted from these images are matched using normalized cross-correlation (NCC).
This is followed by a RANSAC-based homography estimation and non-linear min-
imization. The details are described in [7] (Chap.3, page 108). Figure 3(b) shows
a horizontal image pair and a vertical pair with the respective matched features.
One of the images in the grid, § ¥ is chosen as the reference image and homography® £ is computed for every image § £ , by composing a sequence of transformations,
( ²\²\²��Z� � �Z³S²\²\²�¬wy � ¬wm\´l´ ) along a connected path between § £ to § ¥ in the image grid
as illustrated in Fig. 3(a). An accurate estimate of ® £ ’s for all the images would
allow multi-image alignment in the image plane of § ¥ . Since residual errors accu-
mulate over the composed homographies, the final mosaic obtained by aligning all
the images at this stage contains significant registration errors.

Global image alignment and sub-pixel registration is achieved using an efficient
sparse implementation of bundle adjustment [7,11]. It is initialized from the homo-
graphies ¦ª® £«© and a global feature list (see Figure 3(b)), obtained from the pair-
wise matches. Bundle Adjustment performs global minimization which produces
the maximum likelihood estimates of the model parameters when the reprojection
error is assumed to be zero-mean Gaussian noise. The reprojection error is mini-
mized; the homographies ¦ª® £�© , the panorama features ¦ � ­ © (see Figure 4) and the
radial distortion parameters p ��� are estimated by evaluating the expression:

µ�xª¶¸·K¹«ºw»�¼�½¿¾ [ ÀÂÁ � [ »�ÃnÄ�¾ �Å­�Æ �
ÇÅ£ Æ ��È {_$ ­ £ ��É ��� {«® £ � ­ }�} � (5)

È is the distance between image points; ¦\$ ­ £ © are the observed features; · and º are
the feature-count and image-count respectively. This is called Bundle I in Figures 3
and 4. The accurate homographies ¦s¯® £�© computed here are used to estimate 5 ��� ,
the intrinsics at zoom c � using Hartley’s method [8]. 5 �«� is used to initialize Bundle
II, which estimates 5 �«� , ¦¨9 £«© and p ��� by evaluating the following expression:

µ�xª¶¸·K¹«º�Ê Á � [ »�ËÂ½¿¾ [ ÀÂÁ � [ »�Ã Ä ¾ �Å­�Æ �
ÇÅ £ Æ � È {�$ ­ £ � 5 ��� ´h{ É ��� {
9 £ � ­ }�}�} � (6)

Every
� ­ (in %o! homogeneous coordinates) is parameterized as ( µ ­ , Ì�­ ) where the

third coordinate is +/-1 depending on which face of the unit-cube
� ­ projects to.
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Fig. 4. Bundle Adjustment: ÙÛÚhÜÞÝ�ß�à : parameters á measurements. Ü : common parameters,ß : view-dependent parameters. The parameters for our different bundles (Sections 3.1, 3.2)
are shown. Initial and optimal estimates of the panorama point are â ­ and ãâ ­ respectively.

3.2 Zoom Sequence Calibration

Full range zoom calibration can be done by building a mosaic and repeating the
process described in Sec. 3.1 at multiple camera zoom levels. This would be slow
since more images are needed as the camera zooms in and its effective field-of-view
decreases [8]. Instead we calibrate an image sequence captured in a fixed direc-
tion with the camera progressively zooming in. First homographies ¦ª��������� © ,(see
Eq. 4) are estimated between every image pair in this sequence. Next parameters5 � ½ and p � ½ at zoom c £ for every ¹ is iteratively computed by a bundle adjustment
on images at zoom steps c £ and c £ � � . This is possible since 5 � ½�ä&å and p � ½æäoå were
computed in the previous iteration and 5 �«� and p �«� were obtained from Bundle II
(see Section 3.1). The following expression is evaluated at each zoom step c £ .

µ�xª¶¸·K¹«º Ê Á ½ [ À Á ½ [ »�ÃnÄ�¾ �Å­�Æ �
£Åç Æ £ � � { È {�$ ­ �
è¨� 5 ��è É ��è {

� ­ }�} � } (7)

The uncertainties associated with the estimates of ~ � and ~ � are propagated from
zoom level c £ to the next level in this bundle. These uncertainty estimates are used to
determine the zoom level at which the effect of each coefficient becomes negligible.
Each coefficient is clamped to zero at that particular level and subsequent levels. A
full bundle adjustment, Zoom Bundle (see Figure 4) then refines the calibration by
minimizing the reprojection error over the whole zoom sequence by evaluating:

µ�xª¶¸·K¹«º » Ê Á ½ ¾ [ » À Á ½ ¾Sé £ Æ �*�^�^� ����I [ »�Ã�Ä�¾ �Å­�Æ �
����IÅ£ Æ � È {_$ ­ � ½ � 5 � ½ É � ½ { � ­ }�} � (8)

where · and ·wµ T are the feature-count and image-count respectively. Estimating
radial distortion only from a zoom sequence has inherent ambiguities since a distor-
tion at a particular zoom can be compensated by a radial function at another zoom.
We avoid this ambiguity by keeping the intrinsics computed at c � fixed.
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(a)

Fig. 5. (a) Image Dataset used in Calibration : Top 3 rows: 18 images captured at a fixed
zoom (z=0), pan and tilt angles (ê , ë ) shown above the images are in degrees. The bottom
row shows 6 frames from a zoom sequence of 36 images for a fixed pan and tilt angle.

3.3 Experimental Results

Here we present results from fully calibrating two Canon VB-C10 and two Sony
SNC-RZ30 pan-tilt-zoom cameras in an outdoor environment. The cameras are
placed near two adjacent windows about 3-4 meters apart looking out at a con-
struction site roughly

N\JoJ 0 N % J meters in area. This setup reduced each camera’s
available field of view for pan to only

N¨ìoJ�í
. Hence only the front face of the cube-

maps we build are interesting and hence shown. Figure 5 shows a few images from
a pan-tilt and a zoom sequence respectively which are used in the calibration.

The recovered intrinsics for the four cameras as a function of zoom are shown in
Figures 6 and 7. The principal point was found to move in a straight line for differ-
ence zoom sequences. The motion was most noticeable at high zooms. The VB-C10
had a linear mapping of focal length to zoom whereas the SNC-RZ30’s focal length
was non-linear. The pixel aspect ratio of the VB-C10’s and SNC-RZ30’s were
found to be 1.09 and 0.973 respectively while the skew was assumed to be zero.
Repeated zoom sequence calibration for the same camera from different datasets
(Figure 6) showed the focal length estimation to be quite repeatable. The coeffi-
cients of radial distortion in our model, ~ � and ~ � were estimated along with their
respective uncertainties (Figure 7). These uncertainties were used to clamp ~ � and~ � to zero at particular zoom steps during Zoom Bundle (described in Sec 3.2). The
mean reprojection error from the final Zoom Bundle for 35-40 images, with roughly
200-300 feature matches for every successive pair was within 0.43 pixels.
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Fig. 6. (Top Row) The variation of the principal point and focal length with zoom is shown
for each of the four cameras in our experiments. (Middle Row) Calibration results of a
particular Canon VB-C10 camera from six different image sequences. (Bottom Row) Cali-
bration results of a particular Sony SNC-RZ30 camera from six different images sequences.

4 High-resolution calibrated panoramic mosaics

Our approach described in Section 3, similar to that of [13] allows multi-image
alignment with sub-pixel accuracy and creates high-resolution mosaics from im-
ages acquired by a rotating camera at fixed zoom (see Figures 1, 8). Since the un-
known focal length ' is computed during calibration, the cube-map face is chosen
to be of size %"'<0f%"' , since this preserves the pixel resolution of the original images.
Figure 8 shows a panorama with a single cube-map face at resolutions of 6k 0 6k
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Fig. 7. (a) The variation of the radial distortion coefficients, î � and î � , with zoom is shown
for our 4 cameras. The uncertainties associated with î � and î � are shown using error bars.î � has larger uncertainty compared to î � which is estimated for a longer zoom range. (b)
and (c) shows the variation of î � and î � for repeated calibration of a Canon and Sony
camera, each using 6 different image sequences.

pixels, rendered from 119 images ( ' =3120 pixels approx. 5X zoom) in about 20-
25 mins. We now describe a hierarchical approach aimed at capturing even greater
detail, that utilizes the large zoom range and perform improved blending.

4.1 The multi-resolution approach

Conventional mosaic algorithm [12,13] would be infeasible for stitching hundreds
of images all captured at high-zoom to build extremely high resolution full-view
mosaics. For instance, assuming 50% overlap between adjacent images, the SNC-
RZ30 must capture 21,600 images at 25X zoom (full FOV of  ï´ N\ð&ñ steradians)
while the VB-C10 needs 7800 images at 16X zoom (full FOV of %�´ ì"ìªñ steradians).
By adopting a coarse to fine multi-resolution scheme, where images captured at
a particular zoom are aligned with a mosaic built from images at half the present
zoom, approximately half of the above image count would be needed at full zoom.
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Fig. 8. The front face of the computed cube-maps: (a) Radial distortion was ignored in the
camera model (Note that straight lines in the world are not imaged as straight lines). (b) Ac-
curate panorama created after incorporating radial distortion. (c) Part of a high-resolution
panorama ( ò@ó\ó\óõôuò@ó\ó\ó pixels) built from 119 images at 5X zoom. Note the zoomed-in
regions of the panorama, displayed in the original scale.

The multi-resolution framework itself does require additonal images to be captured
at intermediate zooms. However by using a top-down pruning scheme, we expect
to reduce the number of images captured by avoiding high zoom in areas where
detail is absent (see Section 4.4).

Figure 9(a) gives an overview of our approach. Phase I, deals with building the base
cube-map V � for the lowest zoom (this overlaps with the calibration procedure; see
Section 3). Section 4.2 discusses photometric calibration. This allows a consistent
blending of the base cube-map. Phase II outlined in Figure 9(b) involves building a
cube-map, V � of size %oö x %oö pixels from images captured at zoom level c using
the cube-map V � � � of size ö x ö computed previously from images at roughly
half the zoom. Figure 9(c) summarizes the geometric and photometric alignment
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step performed on each image. The recorded pan G �­ , tilt a �­ associated with every
captured image § �­ is used to generate an image from the calibrated cube-map V � � �
at half the resolution. For a perfectly repeatable camera, these two images denoted
by ÷ and ø in Fig. 9(b) should be perfectly aligned. The SNC-RZ30 and VB-C10
however require additional alignment because of the inherent non-repeatability of
the PTZ controls. The feature based method [7] (Chap.3, page 108) used during
calibration (see Section 3), which is invariant to intensity changes in the two im-
ages, is used here too. Once the images are aligned, the exposure of this new image,÷ � is estimated (see Section 4.2). Once the cube-map at zoom level c is built, its
becomes the base cube-map for the next level. Every level of the cube-map pyramid
is initialized from the previous level by bilinear interpolation.

4.2 Robust Radiometric Calibration

The intrinsic calibration of a PTZ camera is extended here to include photomet-
ric calibration. The camera senses a high range of radiance (brightness intensity)
in the scene while acquiring images in auto-exposure mode. Hence the captured
images have different exposures and must be transformed to a common exposure
before they can be blended into a single mosaic. The camera’s response function
is robustly estimated from the overlapping images captured at its lowest zoom in
Phase I and the exposures of all the images are computed using the method de-
scribed in [10]. This method works by estimating the brightness transfer function
(BTF) between a pair of overlapping images by fitting a curve in the joint his-
togram space of the two images using dynamic programming. The camera response
function is obtained from the BTF’s by solving a least-square problem. The pixel
correspondences required by this method are obtained from the accurate sub-pixel
image alignment step described in Section 3. Once the camera’s response function
is known, the exposure of every subsequent zoomed-in image captured in Phase II
can be estimated using the same method after registering it to the base cube-map
(of known exposure). The results of blending the stitched images after photometric
alignment is shown in Fig. 10(a,b).

4.3 Calibrated Panorama for Closed Loop Control of Active PTZ Camera

An open-loop calibration system for the PTZ camera which relies only on precise
PTZ controls will be inaccurate in general due to errors from various sources; the
camera’s inherent non-repeatable controls, small changes in camera pose during
operation or lack of stability of lens system at high zoom. To deal with such errors,
a closed loop system using a pre-calibrated cube-map should be used. Figure 11
shows two examples of such a repeatable PTZ camera system. The current image
from the PTZ Camera is aligned to an image generated from the cube-map. Reg-
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(a) (b)

(c)

Fig. 10. Front face of a base cube-map rendered (a) without photometric alignment and (b)
with photometric alignment. (c) Image Alignment: The 3 columns show the captured frame,
the corresponding image generated from the cube-map and the aligned image pair (the
first one overlaid on the second) respectively. In the middle row, despite moving shadows
(images were taken far apart in time), the static parts of the scene are accurately aligned.

istration with the cube-map provides the ability of repeatably addressing the same
pixel in the camera cube’s reference from an active camera. In our current system,
we use a robust feature-based image alignment algorithm which deals with illumi-
nation change as well as the presence of foreground objects missing in the precom-
puted mosaic. Since this misalignment error should be quite small for most zoom
values, we could compute this local alignment in real-time as a simple 2-parameter
RANSAC should be sufficient to compute this transformation (see Figure 11).
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(a)

(b)

Fig. 11. Closed-loop Control for an Active PTZ Camera in operation using calibrated
cube-maps : (for both examples below) (Left) Image seen by camera in configuration
(p,t,z), (Middle) Image generated from cube-map using the current configuration, (Right)
The camera’s frame aligned with the generated image. (Bottom) The camera’s frame is
super-imposed on the cube-map in white while the generated image is super-imposed in
black. (a) Example 1 : Camera operating in a construction scene, 6 days after the cube-map
was calibrated. Note the changes that have occured in the scene. (b) Example 2 : Camera
zoomed in on a moving person under different illumination conditions.

16



(a) (b)

Fig. 12. Grey-shaded regions on the base mosaic (1X zoom), indicate where images were
captured at zoom levels (a) 4X and (b) 8X respectively. Most of the sky was skipped.

4.4 Image Acquisition

The computational infeasibility of directly constructing a high resolution mosaic
was described in Section 4.1. Building the mosaic pyramid in a coarse to fine
fashion requires multiple acquistion passes, which captures the scene at a range
of scales. This requires us to inspect images at a coarser scale (low zoom) to decide
which parts of the scene contain detail. Often large portions of the scene contain
textureless regions, for eg. the sky, walls, roads. We avoid zooming into such ho-
mogeneous regions and reduce the number of image acquired considerably.

To quickly acquire images in a scene, we do not wait to first build the calibrated
base cube-map before subsequent passes at higher zoom. Instead an approximate
calibration is used to backproject pixels into rays and effectively decide on the basis
of texture analysis, whether the image at a specific PTZ value should be captured
or skipped. An image block, where the eigen values of its second moment matrix
are large, is mapped to a ray using the corresponding pan and tilt values, which is
inserted into a kd-tree [1]. While scanning the scene in the next pass, a range query
within this kd-tree returns a ray-count within the camera’s FOV. Viewing directions
corresponding to a low count contain mostly textureless regions in the scene. These
images are skipped at the current and subsequent zoom levels. Our approach will
miss texture present at finer scales which are filtered at coarser scales. However this
allows us to directly acquire a compressed version of a very high resolution image
instead of acquiring a raw image and then compressing it using lossy techniques.
The result of pruning at two higher zoom levels is shown in Fig. 12.

4.5 Experimental Results

We built two cube-map pyramids, one each from images captured by a Sony SNC-
RZ30 and a Canon VB-C10 camera placed outdoors looking at a construction site
(see Fig. 13). The

N\J %&2 x
N\J %&2 pixel (face size) base cube-maps were built by stitch-

ing 15 and 9 overlapping images respectively. In each case the multi-resolution
pyramids had five levels upto a resolution of 16K x 16K pixels. The camera cap-
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Fig. 13. Results: Two Cube-maps with 5 levels were built; each face had ùªú , ûüú , ýÞú , þüú
and ùoÿüú square pixels. Certain zoomed-in sections ( ����� x ����� actual image pixels) are
shown above. Column 1 and 2 show the Levels of Detail for two parts of Scene 1. Column
3 and 5 show two parts of Scene 2 at different levels of detail. Compare the resolution with
Column 4 and 6 showing the same view enlarged from the ��� x ��� base cube-map.

tured 15-20 images ie. 5-6.5 Mpixels at 3X zoom. About 70-95 images were cap-
tured at 6X zoom, which produced 21.5-29 Mpixels. Finally 300-350 images were
captured at 12X zoom, out of which 200-250 were successfully aligned and hence
contributed 62-77 Mpixels. These unique pixels in addition to the pixels interpo-
lated from lower levels in the pyramid made up the faces of all the cube-maps.
Scene1 and Scene2 (Fig. 13) were processed in 1-1.5 hrs on a 1.5 GHz Note-
book Computer with 512 MB RAM. The original images were

ð 2 J x 2�� J pixels
(1:10 compressed jpg) and were captured over the local ethernet. In our multi-scale
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cube-map pyramid construction, we used a tile-based representation for the large
cube-map faces and processed them out-of-core using a image tile cache with FIFO
block replacement strategy. This implementation is scalable and can potentially cre-
ate gigapixel images for full-view panoramas by processing upto a few thousand
images to build six full cube-map faces at

N\ð�	
x
N\ð�	

pixel resolution.

5 Conclusions

We have presented an automatic method for calibrating an active PTZ camera (typi-
cally used for surveillance) observing an unknown scene. The camera intrinsics are
estimated over its full range of pan, tilt and zoom by robustly computing homogra-
phies between images acquired by a rotating and zooming camera. Our calibration
algorithm also computes accurate calibrated panoramas at multiple levels of de-
tail. We are currently working towards recovering the calibration of active cameras
in operation. A lack of repeatability is being addressed by building an efficient
closed-loop system, that re-estimates the calibration everytime the camera moves
by robustly aligning a new image with the calibrated panorama (the calibration
reference). This step works in the presence of new foreground objects and could
be performed in real-time. This will allow the practical calibration of active PTZ
camera networks for 3D modeling and other surveillance applications.
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