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Abstract

We present a stereo algorithm designed for speed and
efficiency that uses local slanted plane sweeps to pro-
pose disparity hypotheses for a semi-global matching al-
gorithm. Our local plane hypotheses are derived from ini-
tial sparse feature correspondences followed by an itera-
tive clustering step. Local plane sweeps are then performed
around each slanted plane to produce out-of-plane paral-
lax and matching-cost estimates. A final global optimiza-
tion stage, implemented using semi-global matching, as-
signs each pixel to one of the local plane hypotheses. By
only exploring a small fraction of the whole disparity space
volume, our technique achieves significant speedups over
previous algorithms and achieves state-of-the-art accuracy
on high-resolution stereo pairs of up to 19 megapixels.

1. Introduction
As imaging and processor systems continue to increase

in resolution and power, the need for more efficient stereo
matching algorithms is becoming more acute. Increasing
the image resolution not only increases the number of pix-
els that must be processed, it also increases the number
of disparity levels that must be considered. For example,
the full-size 2005 Middlebury stereo pairs [15] average 1.4
megapixels (MP) and have a disparity range of 200 pixels;
the recent Disney/ETH datasets [12] are as large as 19 MP
with disparity ranges up to 1000 pixels.

While great advances have been made in the last decade,
most algorithms (with the exception of seed-and-grow and
“PatchMatch” approaches, which we discuss in the next
section) still evaluate the complete disparity space image
(DSI), either explicitly, or by doing a local correspondence
search over the full range of disparities.

In this paper, we remove this full search using sparse
feature correpondences to propose local planes along which
we perform small-disparity plane sweeps. This has the ad-
vantage of handling highly slanted surfaces without requir-
ing many disparity hypotheses and without any bias toward
fronto-parallel orientations. The local plane sweep not only

Figure 1. A disparity map computed in 15 seconds by our method
for the 11-megapixel Couch stereo pair selected from the multi-
view datasets released by [12] (best seen in color). More than
98.5% of pixels agree to within 2.0 disparities with their result,
which was computed from 100 densely-spaced input images.

performs subpixel registration, it also deals gracefully with
curved surfaces, which a single plane would fail to model.

The key to our approach is its ability to efficiently pro-
pose and evaluate local plane-sweep hypotheses indepen-
dently. Our algorithm is also able to propagate promising
hypotheses into adjoining image regions that have not yet
been adequately modeled. We merge the candidate surfaces
from the local plane sweeps in a final optimization step us-
ing a variant of semi-global matching [10]. The resulting
algorithm exhibits high efficiency since it only evaluates
a small fraction of potential disparity hypotheses. It also
maintains high accuracy due to its subpixel registration and
edge-aware global optimization components. We present an
experimental comparison with several state-of-the-art tech-
niques that demonstrates the superior accuracy and high ef-
ficiency of our approach on 20 high-resolution stereo pairs,
including seven new 5-6 MP datasets with ground truth.



2. Previous work

While stereo matching is one of the longest-studied
problems in computer vision [9, 16], the last decade has
seen an explosion of new algorithms, with dramatic in-
creases in both accuracy and computational efficiency. For
example, the Middlebury Stereo Evaluation page [15] lists
140 new algorithms published (and benchmarked) since
2002. The strong interest in this problem has been driven
both by the practical utility of such algorithms and the avail-
ability of challenging benchmarks such as Middlebury and
the KITTI Vision Benchmark Suite [7].

Much of the recent focus in this area has been directed
towards achieving pixel-accurate results on the Middlebury
benchmarks, often using sophisticated global optimization
techniques and Markov Random Field (MRF) formulations.
Stereo methods such as ours that employ slanted planes date
back to [1]; more recent algorithms include [3, 4, 23]. Most
of these techniques, however, take minutes or even hours to
run on images of the size we consider in this paper.

Semi-global matching (SGM) [10] is a faster optimiza-
tion technique that approximates 2D MRF inference by per-
forming cost aggregation along various 1D paths in the im-
age, which allows high-resolution images to be efficiently
handled. Recent work on dense scene reconstruction from
3D light fields [12] demonstrates that extremely detailed ge-
ometry can be recovered from high resolution images.

Local methods for stereo matching have had a recent
renaissance, as adaptive support weights or bilateral fil-
tering can yield results competive with global approaches
for scenes with sufficient texture [11]. Unfortunately, both
SGM and local methods require evaluating the full disparity
space image (DSI), i.e., computing matching costs at each
pixel for all disparities under consideration.

Techniques that avoid evaluating the full search space
have been proposed both for global and for local methods.
Methods for reducing the search space for global optimiza-
tion include [21, 22, 23]; however, they still require an ex-
haustive DSI computation, which makes them quite slow.

The seed-and-grow method [20] does in fact only ex-
plore part of the search space, but it produces only a partial
disparity map, leaving large image regions unlabeled. The
more recent highly optimized “Libelas” method [8] builds a
triangulation over sparsely matched keypoints and uses this
to explore the disparity search space. Finally, PatchMatch
stereo [2] also avoids exploring the full disparity space by
propagating good disparities from an initial set of guesses
to neighbors. We compare our technique with both Libelas
and PatchMatch stereo in Section 8.

3. Overview

Unlike most prior work on plane+parallax representa-
tions in stereo matching, where a pre-estimated depth map

is used to identify which pixels should be associated with
dominant planes, in our work, the planes are estimated from
sparse feature matches. Each plane π and a narrow range of
parallax ±T defines a local stereo problem in a certain re-
gion R of the image. We refer to (R, π, T ) as a local plane
sweep problem and solve it using SGM [10]. This gener-
ally only produces a partially valid surface proposal s, as
the true disparity of some pixels in R may be outside the
range. In the final stage of our algorithm, all image pixels
are assigned to individual surface proposals using an effi-
cient discrete optimization framework.

While avoiding the evaluation of the whole DSI is one
motivation for our work, our two-staged approach decom-
poses the original problem into multiple local problems,
each of which has a lower range of uncertainty. The re-
stricted range of each local problem further aids regulariza-
tion and encourages locally smooth surfaces. As we explain
in Section 5, the local solutions provide additional discrim-
inative features for the final assignment stage.

Our final stage involves a discrete multi-label pixel la-
beling problem, where pixels must be assigned to surface
proposals. Such problems have traditionally been addressed
with global energy minimization methods. In this paper, we
show that SGM is also an effective technique for general
multi-label assignment problems, which, to our best knowl-
edge, is also a novel contribution. Our proposed approach
thus goes significantly beyond simply reducing the label set
for a standard SGM stereo method, which operates on or-
dered label sets and cannot model second-order smoothness
(i.e., slanted planes).

4. Hypothesis generation
Feature matching. We establish sparse correspondences
by extracting Harris corner keypoints and upright DAISY
descriptors [5] in both images. We match these features
along epipolar lines and allow small vertical offsets to
increase robustness to minor vertical misalignments. After
an initial set of matches have been selected using the ratio
test heuristic [13], more matches are found in a second
round where the horizontal search range is reduced using
local estimates of the disparity range at each pixel, which
are computed from the initial set of matches.

Vertical alignment. We correct for small vertical misalign-
ments from errors in rectification, which are often more
pronounced in high-resolution images, by fitting a global
linear model dy(x, y) = ay + b to the vertical offsets dy .
This involves a few RANSAC iterations of matching fea-
tures obtained from the previous stage followed by a global
least-squares fitting step. The overhead of this correction
is negligible since it is applied at the same time as warping
the right image during plane-based resampling described in
Section 5.



(a) (b)

(c) (d)
Figure 2. Plane hypothesis generation: (a) input image; (b) ex-
tracted and matched keypoints; (c) clustered points (color-coded);
(d) initial estimated planes visualized in 3D.

Disparity plane estimation. Although previous stereo
matching approaches have exploited the idea of using lo-
cal planes, they typically require at least an initial disparity
map and often also pixel grouping via color segmentation,
which tends to make these methods computationally expen-
sive. Instead, in our method, we directly estimate multi-
ple disparity planes from sparse feature matches. We de-
note the matchesM = {xi, yi, di}ni=1, where (xi, yi) and
(xi − di, yi) are matched pixels in the left and right im-
ages. A plane π = (πa, πb, πc) induces a disparity equal to
π(x, y) = πax+ πby + πc at the left pixel (x,y).

To estimate a set of planes and their parameters, we
adopt an iterative approach for clustering points inM such
that a single plane provides a good fit to points within each
cluster (Figure 2). Our method is inspired by a variational
approach used for mesh simplification [6].

We construct a graph G over u ∈ M by connecting
each node u in G to its ten 2D Euclidean nearest neigh-
bors. Our clustering technique then uses this graph to com-
pute k disparity planes by minimizing the overall objective∑n
i e(ui, πli), where the index li indicates the plane that ui

is assigned to. The function e(ui, π) = (di − π(xi, yi))
2

measures the error between the true disparity at ui and the
disparity induced by the plane.

In the first iteration, random nodes u ∈ G are selected as
seeds and fronto-parallel planes πu are computed using the
mean disparity at u and its neighbors {vj}. Then, elements
(vj , πu) are inserted into a priority queueQ using the fitting
error e(u, π) as the priority value. Each plane πu is propa-
gated via breadth-first traversal as long as the error is within
a threshold κ that controls the resolution of the planar ap-

proximation (we use κ=3 pixels). Nodes are then assigned
to planes by popping elements (u, π) from Q and assigning
u to π if u is currently unassigned. Once all vertices are
assigned, the plane parameters are re-estimated using least
squares from the points assigned to it.

In the next iteration, the clustering from the previous step
is used to select a point that best fits each plane and these
serve as new seed nodes for computing the assignment from
scratch. The label propagation from these seeds to all other
nodes then proceeds in the same way as described before.
This method converges quite quickly so we perform only
three iterations in all our experiments.

At this point, we have estimated all plane parameters, but
their true 2D spatial extents remain unknown. Extending
the planes to the whole image [18] can be slow and is feasi-
ble only for piecewise-planar scenes where a small number
of planes are needed. In general, obtaining the true extents
a-priori is difficult. Therefore, we start by initializing the
extents of the planes to the 2D bounding rectangles of their
respective clustered points and progressively update them
after each round of local plane sweeps as more information
becomes available.

5. Local plane sweeps
In this section we describe how each local plane sweep

problem is solved. We assume that we are given a plane
π, a rectangular region R in the left image and a range of
±T pixels of parallax from π. The desired output is a local
surface proposal s together with a cost map U indicating
how well pixels could be matched within the given range.

First, we use the plane equation (along with the known
corrected epipolar geometry) to warp the right image intoR
using bi-cubic interpolation. We then compute normalized
cross-correlation over 3×3 patches to obtain a correlation
score NCC(x, y, d) in [−1, 1] for each disparity hypothe-
sis, while adding a term ε to the denominator in the NCC
expression to downweight textureless regions with low vari-
ance.1 We clip and invert the NCC score to turn it into a per-
pixel matching costC(x, y, d) = 1−max(0,NCC(x, y, d)).
Next, we use optimization to refine these raw cost (DSI)
estimates in ambiguous (repetitive-texture or low-texture)
areas. As with most MRF regularization approaches [19],
we minimize the sum of the local unary matching costs
and spatially-varying smoothness costs, for which we use
a penalty of the clipped monomial form,

Vpq(lp, lq) =

 0 if lp = lq
1 if |lp − lq| = 1
ws(Ip − Iq) otherwise

, (1)

where (lp, lq) are integer disparities at adjacent pixels,
and ws(∆I) = 1 + αe−|∆I|/σI is a gradient-dependent

1 See the project webpage [17] for full equations and all parameter
values used in our implementation.



Left RightW D∗ R∗ U GT
Figure 3. Local plane sweeps for two different scene depths, using disparity planes that align the statue face (top row) and the background
(bottom row). RightW is the right image warped by the respective plane. D∗ is the estimated local disparity map (8 disparity levels color-
coded in rainbow colors + black). R∗ is the absolute intensity residual corresponding to D∗, which is combined with matching costs and a
disparity jump map into a final cost map U (Equation 3). To show that U adequately segments out the “good” pixels within range, we also
show the ground-truth segmentation GT (with black = in-range, red = too far, cyan = too close, and green = occluded).

smoothness weight that decays to 1 as the inter-pixel
intensity difference gets large. Ip and Iq lie in the range
[0, 255]; we use σI = 8 and α = 10.

Semi-global optimization. While many global methods
can compute good approximations of the optimal disparity
assignments [19], we use the semi-global matching (SGM)
algorithm by Hirschmüller [10] because of its efficiency
and good performance. SGM works by computing run-
ning sums of local matching costs together with neighbor
smoothness costs along several 1D paths in the image. The
left-to-right running sum is computed as

S0(x, y, d) = C(x, y, d) +M(x− 1, y, d),

M(x, y, d) = min
d′

Vpq(d, d
′) + S0(x, y, d′), (2)

where p = (x, y) and q = (x+1, y). Because of the special
form of the smoothness potential (1), the entries in a new
column of summed disparity values can be computed using
just 3 add/subtract and 4 minimum operations per disparity
level [10]. We compute these running sums in the 8 cardinal
directions and sum them to obtain a total aggregated cost
volume. The complexity of each mini plane sweep is thus
O(whT ), where (w, h) is the size of the rectangle R and
2T is the parallax range. We experimented with values of
T in the range of 2–5 and settled on T = 3. The choice is
not critical; smaller values speed up the local sweeps but
require generating more plane hypotheses.

Once the running sums have been computed, we choose
the local disparity d∗ at each pixel that minimizes the total
aggregated cost and add this value to the plane equation to
obtain the base disparity map D∗ representing the surface
proposal s.

Identifying in-range disparities. In order to identify
which pixels could be confidently matched within the
given disparity range, we compute three additional quan-
tities from the winning disparities D∗: the intensity
residuals R∗(p), gradient-weighted NCC costs C∗(p) =
‖∇I(p)‖C(p, d∗), and a disparity jump map J∗(p) encod-
ing disparity changes greater than 1 in D∗. We combine
these three features into a per-pixel cost map

U(p) = λRR
∗(p) + λCC

∗(p) + λJJ
∗(p), (3)

where λR = 0.25, λC = 0.25, and λJ = 0.5 control the
relative contribution of each map after normalizing them
to the same range. As shown in Figure 3, the cost map
U(p) can be used to identify the pixels whose disparities
are within range. The intuition is that the three compo-
nents of U provide complementary evidence for pixels out
of range—either via high residuals R∗, high NCC costs at
high gradients C∗, or at locations of high (and frequent)
disparity jumps J∗.

The cost map U is used in the next two stages, for
generating new proposals and for computing the final
disparity map using global optimization.

Parameter tuning. We determined default values for all
parameters empirically using all available stereo pairs with
ground truth. The SGM parameters were tuned in our base-
line implementation (see Section 8). We designed the terms
in the cost map U (3) and tuned their scalar coefficients us-
ing ground-truth solutions to the local plane sweep prob-
lems. Ideally these parameters could be learned if a suffi-
cient amount of ground-truth training data was available.



6. Proposal generation
We have developed a greedy approach for efficiently ex-

ploring the disparity search space while avoiding unneces-
sary local plane sweeps as much as possible. Our algorithm
divides the left image into a 2D grid of t×t tiles. We use
t= 256 pixels and an overlap of 1 pixel vertically and 2T
pixels horizontally to avoid boundary issues. In our method,
local plane sweeps are performed in nR rounds and new
proposals are added in batches in all but the last round.

Initially, given k planes and their point clusters in M
(Section 4), we find the planes with associated points within
each tile. These form the initial set of proposals P0 for each
tile in the first round of local plane sweeps.

We then iteratively generate additional online proposals
as follows. After each round r of plane sweeps, we update
a winner-take-all (WTA) label map L∗r at all pixels. Al-
though L∗r is noisy, it provides an indication of where each
plane has support, as frequent labels in a particular tile in
L∗r are preferred candidates for neighboring tiles as well.
We then propagate well-supported plane proposals into ad-
joining tiles. At each tile, we collect the new proposals from
the four neighbors, discard planes that were already swept,
and add the plane with the most support to the set of planes
for the next round. In this manner, promising parts of the
disparity space get explored even if they were not among
the set of initial proposals based on matched features.

Our complete method is summarized in Algorithm 1.
Note that the iterative propagation of proposals can be
skipped by setting nR= 1, resulting in a simpler and faster
method with slightly reduced accuracy (see Section 8).

Compared to previous methods, e.g., [3, 4], our gener-
ated proposals are often more targeted. Furthermore, the
local plane sweep solutions are efficiently merged using
global optimization in a final stage, rather than using ex-
pensive MRF fusion moves after every proposal.

7. Global optimization
Given several surface proposals and their associated cost

maps, we formulate the final disparity map estimation as a
pixel labeling problem that involves assigning each pixel p
to one of the candidate surfaces s, or equivalently, to one
of the planes π. The optimal assignment L is computed
by minimizing an energy function defined on a 4-connected
pixel grid,

E(L) =
∑
p

Up(lp) +
∑
p,q

Vpq(lp, lq). (4)

For the unary term, we use the truncated costs Up =
min(τu, U(p)), where U(p) is the cost map corresponding
to surface lp (3) and τu = 40. The pairwise term Vpq is
similar to (1) defined in Section 5, but we omit the term
for label pairs that differ by one, since our labels no longer

Algorithm 1 Local-Plane-Sweep-Stereo (Il, Ir)
M← match-keypoints (Il, Ir)
Π← estimate-disparity-planes (M) // see Section 4
P0 ← generate-initial-proposals (Π, t)
S ← ∅ // the set of candidate surfaces
for r = 1→ nR do

for all proposals p ∈ Pr−1 do
s← local-plane-sweep (p) // see Section 5
S ← S ∪ s // update set of candidate surfaces

end for
if r < nR then
Pr ← generate-online-proposals (Π, S) // see Section 6

end if
end for
D ← global optimization (S) // see Section 7
return D

form an ordered set. Instead, we now use a pure contrast-
sensitive Potts model, and weigh the term for different la-
bels by w=25.

We use semi-global matching [10] to efficiently obtain
an approximate solution to this optimization problem. Even
though the formulation is conceptually similar to the one de-
scribed in Section 5, there are some important differences.

First, although cost aggregation is now done on the
whole image, pixels within each tile are restricted to a
smaller subset of planes. Second, these subsets may vary
from tile to tile. We extend the cost aggregation technique
used by SGM to exploit the fact that most tiles have a
compact subset of labels. The update rules within a tile
remain identical to Equation 2 but operate only on the
subset of labels pertaining to that tile. However, across
tile boundaries, we need to find which local label indices
in adjoining tiles correspond to the same plane. By pre-
computing bidirectional lookup tables for sets of labels in
all adjoining tiles, this mapping can be retrieved in constant
time during running sum computations.

Final disparity selection. Instead of just selecting the sur-
face with the minimum aggregated cost as in the original
method, we compute the final disparity by first selecting
multiple (top–m) candidates per pixel. At each pixel, we
then compute the median of all multi-valued disparity hy-
potheses within a τ × τ window centered on that pixel and
select this as the final disparity. To select the multiple candi-
dates, we first find the minimum cost c∗ at a pixel, and then
select the top m planes that have costs less than or equal to
λc∗ 2. If a pixel has fewer than m candidates, we replicate
its winning candidate to ensure that it has m hypotheses.

2We use m = 2 and λ = 1.25. We use τ = 5 for resolutions of 3 MP
or less; otherwise we use τ = 7.



Figure 4. Error rates (% bad pixels with error > 1.0) on the three sets of test images. Our method yields the lowest average errors on all
three sets. Note that PatchMatch and SGM-base could not be run on the two largest Disney4 datasets.

Figure 5. Average error vs. log runtime for the three test sets. Our method yields the lowest errors and the second-lowest runtimes.

8. Experiments

Datasets. We have evaluated our technique on 20 high-
resolution images with ground-truth disparities, organized
in three groups. The first group, Midd9, consists of
nine “full-resolution” stereo pairs from the Middlebury
benchmark [15] that were used in recent work on high-
resolution stereo matching [8, 23]. These images range
from 1.4 megapixels (MP) to 2.7 MP in size and include
pixel-accurate integer ground-truth disparities. The second
group, MiddNew7, consists of seven new challenging
datasets taken from the 2014 Middlebury public stereo test
set [14] (Figure 7 depicts a subset). These images range
in size from 5.0 to 5.9 MP and include subpixel-accurate
floating-point disparities. The third group, Disney4,
consists of 4 stereo pairs manually selected from the
high-resolution multi-baseline datasets used in [12]. Here,
the resolution is between 4.5 MP and 18.9 MP; we treat the
disparities computed by [12] from the full sets of 50–100
images each as the ground truth. The disparity range in all
20 pairs varies from 200 to 330 pixels.

Comparison methods and evaluation. We compare our
Local Plane Sweep (LPS) method to several state-of-the-
art methods able to handle the large image sizes of our
test suite: PatchMatch, an implementation of [2] provided
by the authors; SGM-HH, an optimized implementation of
SGM [10] from the author; SGM-base, our own baseline

implementation of SGM; and Libelas, the implementation
of [8] publicly shared by the author. All five implementa-
tions are in C++ and the reported timings are from runs on a
system with a 2.7GHz Quad Core i7 CPU and 32GB RAM.

SGM-base runs a single plane sweep minimizing the
same costs as LPS (Section 5), but densely evaluates the
full disparity range on the full image. The implementation
is unoptimized and single-threaded. In contrast, both SGM-
HH and Libelas are heavily optimized using SSE intrinsics
and single-threaded, while PatchMatch is multi-threaded.
Our LPS implementation is also multi-threaded but could
be further optimized; in particular it trivially parallelizes to
many-core architectures and GPUs.

Following standard practice, we use the fraction of
incorrect disparities at non-occluded pixels for error thresh-
olds t= 1.0 and t= 2.0pixels as the accuracy metric. For
datasets whose ground truth is only available as integers,
we round floating-point disparities to integers in order to
allow a fair comparison with integer-based methods. In this
paper we present a selection of the important results; the
complete results can be found on the project webpage [17].

Results. The accuracy of the five methods on all 20 datasets
for t = 1.0 is shown in Figure 4. Table 1 lists the average
accuracy by test set for both error thresholds as well as run-
times. It can be seen that our LPS method is the most accu-
rate not only in terms of test set averages, but also on all but
three of the individual datasets. To examine the relation be-



(a) (b)

Figure 6. (a) Runtime and accuracy as a function of disparity range on the 19 MP Disney Mansion sequence. (b) Accuracy vs. runtime of
our method on the Midd9 images as the number of rounds nR is varied from 1 to 10. We use nR=3 for all results reported.

Left image Ground truth SGM-HH Libelas LPS (ours)

Figure 7. Results on a subset of the MiddNew7 test images with ground truth (Piano, Motorcycle, Adirondack, Playtable, and Recycle).

tween accuracy and runtime, Figure 5 plots the average er-
rors of all five methods against log runtimes for each of the
three test groups. The same trend is observed in all cases:
Libelas is the fastest, our method LPS is the most accurate,
and SGM-HH is the second most accurate. SGM-base is of-
ten comparable to SGM-HH in accuracy, but slower, while
PatchMatch is neither competitive in speed nor accuracy.

A qualitative analysis of the disparity maps (Figure 7) re-
veals that our method excels at recovering slanted surfaces
even with weak texture, which are difficult for SGM (for

instance the Adirondack chair). Libelas, on the other hand,
often makes gross errors if the initial triangulation of feature
points fails to include parts of the scene. LPS also can com-
pensate for vertical misalignment which causes problems
especially in areas with high-frequency texture (such as the
floor in Playtable). Completely untextured regions, such as
the ceiling in Piano, are problematic for all techniques.

To evaluate performance on larger disparity ranges, we
selected ten pairs with increasing baseline from the 19 MP
Mansion dataset [12], yielding disparity ranges from 100 to



PatchM. SGM-base SGM-HH Libelas LPS
Time (s) Midd9 1216 101.1 13.2 1.2 3.8

MiddNew7 3218 257.2 51.2 4.4 10.3
Disney4 7371∗ 568.3∗ 78.9 7.8 16.6

% Error Midd9 9.2 6.4 5.9 9.0 5.2
t=1.0 MiddNew7 50.3 43.5 39.7 43.7 27.7

Disney4 38.6 35.6 25.6 28.6 20.1
% Error Midd9 7.3 3.6 3.7 6.1 3.2
t=2.0 MiddNew7 44.2 28.8 28.0 29.0 18.7

Disney4 23.0 16.5 13.0 11.9 7.5

Table 1. Average runtimes and errors for the each of the five meth-
ods. Our LPS method yields the highest accuracy at the second-
lowest runtime. ∗PatchMatch and SGM-base cannot handle the
two largest Disney pairs, so the runtimes are extrapolated.

1000 pixels. As shown in Figure 6a, the runtimes of our our
LPS method and Libelas remain constant while the runtime
of SGM-HH, as expected, is linear in the number of dispar-
ities. At the maximum disparity range of 1000 pixels, our
method is 16 times faster than SGM-HH. LPS and SGM-
HH are comparable in accuracy on all ten pairs and con-
sistently more accurate than Libelas. (The rising errors at
larger baselines are partly due to inconsistencies in the dis-
parities computed by [12], which we treat as ground truth.)

Finally, we evaluate the iterative generation of proposals
in our method. By default, we use nR=3 rounds of propos-
als. It is possible, however, to trade speed for slightly higher
accuracy using additional rounds. Figure 6b shows the re-
sults of varying nR from 1 to 10. For nR=10, the accuracy
of our method improves by 4.9% on Midd9, while the run-
time increases by 50%. On the other datasets (not shown
here) the accuracy gains are lower: 1.5% for MiddNew7,
and 3.7% for Disney4, with similar increases in runtime. In
the future, we plan to investigate an automatic criterion for
adaptively selecting a smaller number of proposal rounds.

9. Conclusion
We have presented a new highly efficient stereo match-

ing technique that exploits sparse stereo correspondences to
perform local plane sweeps without exploring the full dis-
parity search space. We have compared our method with
four other state-of-the-art techniques on public benchmark
images as well as 7 new challenging high-resolution images
with ground truth. The experiments show that our technique
is accurate in textured areas, recovers accurate depth dis-
continuities, and can handle strongly slanted surfaces with-
out bias. Among the efficient methods that are feasible for
stereo matching on high resolution images, our technique
produces the most accurate results, while being on average
only a factor of 2-3 slower than the fastest technique. In the
future, we would like to further improve the accuracy of our
method, in particular in untextured regions. We also plan to
explore a multi-resolution approach with local plane sweeps
at multiple resolutions to handle large untextured areas as
well as high spatial frequencies within a unified framework.
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