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Abstract. We present a system that detects 3D mirror-symmetric ob-
jects in images and then reconstructs their visible symmetric parts. Our
detection stage is based on matching mirror symmetric feature points and
descriptors and then estimating the symmetry direction using RANSAC.
We enhance this step by augmenting feature descriptors with their affine-
deformed versions and matching these extended sets of descriptors. The
reconstruction stage uses a novel edge matching algorithm that matches
symmetric pairs of curves that are likely to be counterparts. This allows
the algorithm to reconstruct lightly textured objects, which are problem-
atic for traditional feature-based and intensity-based stereo matchers.

Key words: Symmetry detection, 3D reconstruction, curve matching

1 Introduction

Mirror (bilaterally) symmetric 3D objects are all around us in the man-made
world, and yet most computer vision algorithms do not take advantage of this
potential structural regularity. Figure 1 show some of these objects, which often
occur in cluttered environments and may also suffer from a dearth of easily
matchable keypoint features.

There exists a wide body of literature for detecting skewed planar symmetric
shapes [1–6]. Techniques have also been developed for reconstructing 3D sym-
metric scenes [7, 8]. However, relatively few algorithms have been developed for
reconstructing symmetric 3D objects in cluttered environments. Previously pub-
lished algorithms either rely on manual intervention [9–11], apply photometric
stereo to symmetric textureless objects [12], or assume structural regularities,
such as piecewise planar surfaces bounded by straight line segments [13].

In this paper, we remove the restrictions found in previous systems and
demonstrate the ability to detect and reconstruct a wider range of 3D mirror-
symmetric objects in general scenes. We begin by matching pairs of mirrored key-
point descriptors to find the epipolar geometry (vanishing point) corresponding
to the direction of symmetry, i.e., the normal of the plane of symmetry (Fig-
ure 2a). We enhance the performance of this stage by constructing local affinely
deformed versions of each descriptor, which gives us a richer set of potential
features to match and better tolerates local foreshortening effects.
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Fig. 1. Some examples of mirror-symmetric 3D objects in cluttered settings.

Next, we rectify the input image to obtain a traditional horizontal epipolar
geometry (Figure 2b). We then extract edges and curves from the rectified im-
age (Figure 2c) and match these to obtain the disparities (inverse depths) of
corresponding points (Figure 2d). Because it uses a different set of features, our
curve-based approach to matching is complementary to the feature-based [1–5]
and dense pixel-based [7, 8] matching approaches used in previous systems and
therefore extends the range of applicability of symmetry detection and recon-
struction techniques.

The remainder of this paper is structured as follows. We begin with a review
of previous work in Section 2. In Section 3, we describe the imaging geometry
when viewing a bilaterally symmetric 3D object from both a canonical and
general viewpoint. Section 4 describes our RANSAC-based matching algorithm
for finding the symmetry direction and our enhanced feature descriptors. Section
5 describes how we rectify each image according to the dominant symmetry
direction and determine the likely disparity range. Section 6 describes our curve
matching algorithms for finding dense edge correspondences on the symmetric
3D objects. Section 7 summarizes our experiments on a number of challenging
scenes and real-world 3D objects. We conclude with a discussion of future work.

2 Previous work

The computer vision literature on detecting bilateral, point, and translational
symmetries is rich and voluminous. Liu et al. [1] provide a comprehensive sum-
mary and guide to this literature, while [6] summarizes the results presented at
the recent Symmetry Detection from Real World Images CVPR 2011 workshop1.

Among all of the symmetries studied in this field, the most closely related to
this paper are 2D bilateral (mirror) skew symmetries, which are observed when
a bilaterally symmetric planar object (e.g., butterfly wings) are observed from
an arbitrary perspective camera. Most approaches to detecting such symmetries
start by matching affine covariant regions or interest points and then voting for
the axis of skew symmetry [2–5, 14].

In this paper, we are interested in detecting and modeling full 3D objects
with interesting depth and structure rather than just planar configurations [15].

1 http://vision.cse.psu.edu/research/symmComp/workshop/index.shtml
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(a) (b) (c) (d)

Fig. 2. Processing pipeline: (a) epipolar geometry from matched points; (b) rectified
image with depth range and inlier matches (see text for a longer description); (c)
extracted curves; (d) recovered depths for matched curves.

The observation that an object and its image seen in a mirror can be treated
as a stereo pair goes back at least two decades. The system described by Mit-
sumoto et al. [9] uses manual correspondences to determine the 3D points from
which a wireframe model can be constructed. François et al. [10] observe that a
mirror-symmetric scene can be similarly treated as a stereo pair; they use the
commercial PhotoModeler system to establish manual correspondences in or-
der to create texture-mapped 3D models of objects. Shimshoni et al. [12] apply
photometric stereo to images of symmetric textureless Lambertian objects.

Jiang et al. [11] use orthogonal vanishing points to estimate the camera pose
and intrinsics; they then use automated feature detection and matching to esti-
mate a sparse 3D reconstruction, which is then turned into a continuous texture-
mapped model with the help of user sketching. Xue et al. [13] describe a related
system that uses automated straight line segment detection and mapping to
produce piecewise-planar models of furniture. The detection of 3D symmetry in
range scan data is also an active topic of study in computer graphics [16].

Fully automated methods for dense reconstruction of scenes with extended
symmetries have recently been developed. Wu et al. [17, 7] describe a system
for detecting repetitions in architectural scenes and use dense stereo matching
to build 3D texture-mapped façade models. Koser et al. [8] find the symmetry
plane in a bilaterally symmetric architectural interior, façade, or detail using
automated feature matching; they then use dense stereo to obtain a depth map.

In this paper, we use similar automated matching techniques to estimate
the plane of symmetry, but then use curve matching to reconstruct a sparse
3D object model for objects that lack dense texture. We also demonstrate our
results on objects seen in cluttered environments, where determining the epipolar
geometry and the extent of the symmetric objects are challenging problems.

3 Problem formulation

A bilaterally symmetric 3D object has a plane of symmetry, where corresponding
points are opposite to each other with respect to this plane. Let us call the normal
associated with this plane as the direction of symmetry.

The simplest case to analyze is when the direction of symmetry is aligned
with the x-axis, as in Figure 3a. Under this condition, all corresponding points,
e.g., p0 and p′

0, lie on corresponding scanlines. Furthermore, points that lie at the
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Fig. 3. Epipolar geometry: (a) In a rectified configuration, the disparity d0 between
a point p0 matched in an image with its reflected version r0 is equal to twice the
horizontal distance d0/2 between the match midpoint m0 and the optic center c. Note
that in general, objects may have more than one local axis of symmetry per scanline.
(b) A top-down view shows the relationship between the 3D horizontal displacement
∆X between corresponding points, between the optic center and the midline ∆X/2,
and the pixel horizontal disparity d0 = f∆X/Z0.

same depth from the camera have the same horizontal disparity d0 = ‖r0−p0‖,
where r0 is the point in the horizontally reflected image that would end up being
matched with p0 by a traditional stereo matcher.

It is easy to show that the horizontal disparity d0 = f∆X/Z0 is equal to twice
the horizontal distance from the optic center to the midpoint m0 (see Figure 3b).
The disparity is linearly related to inverse depth by the scale factor f∆X, where
f is the focal length and ∆X is twice the horizontal distance between the plane
of symmetry and the optic axis.2

In the case of a camera in a general configuration, the direction of symme-
try, i.e., the lines joining all corresponding points, point at a finite epipole e
(Figure 4). By assuming that the camera has orthonormal axes, square pixels
and principal point at the center of the image, and by assuming that the focal
length f is known3, we can compute a rectifying rotation around the optic center
that transforms an arbitrary image into a horizontally rectified one, i.e., where
e′ = (1, 0, 0) and all corresponding points lie on corresponding scanlines. Let
us denote the rotation between the world coordinate system and the rectified
coordinate system using a 3× 3 rotation matrix

R =
[
r0 r1 r2

]
. (1)

R maps the ideal point i = (1, 0, 0) to an epipole direction r0 = Ri, which then
gets projected to the epipole e0 = (ex, ey, f). We can therefore determine the
first column of R by simply normalizing the calibrated epipole coordinates, i.e.,
r0 = N (e0), where N (v) = v/‖v‖ turns a vector into a unit vector.

How can we determine the other entries in R?

2 This is the same formula as in traditional rectified stereo matching, where d = fB/Z
and B is the horizontal baseline between cameras [18].

3 Modern cameras report their focal lengths in their EXIF tags and mobile vision
applications can also assume a calibrated sensor. If such information is missing,
additional cues in the image, e.g., orthogonal vanishing points, can be used instead.
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Fig. 4. In a general image configuration (arbitrary camera rotation), lines joining
mirror-symmetric points (pi,p

′
i) intersect at the vanishing point e corresponding to

the direction of symmetry. Pairs of correspondences delineating a planar surface with
bilateral planar symmetry can be used to compute a midline l, which can be made
vertical during the rectification stage.

One possibility is to minimize the amount of roll around the x axis during
the rectification process. This can be achieved by setting

r1 = N (k× r0) (2)

r2 = r0 × r1, (3)

where k = (0, 0, 1).
Another possibility is to pick a plane in the image that passes through two

matching pairs, say (p0,p
′
0) and (p1,p

′
1) in Figure 4, and to make this plane

orthogonal to the camera in the rectified image. To do this, we first compute
the midline l as the line joining midpoint m01 = p0p

′
1 × p1p

′
0 and “vanishing

point”4 v01 = p0p1 × p′
0p

′
1. We then set

r1 = N (l× r0) (4)

r2 = r0 × r1. (5)

This choice makes the green midline l in Figure 4 map to the vertical green
midline in Figure 3a.

We have experimented with both of these choices, and found that while the
second strategy (which can be implemented using RANSAC and then counting
inliers to this plane) does indeed expose the bilateral symmetry on the chosen
plane, it also creates larger pixel distortions during the rectification stage. We
therefore use the first strategy, which minimizes the amount of distortion while
moving the horizontal epipole to infinity.

4 Feature-based symmetry detection

Given this geometric analysis of bilateral 3D symmetry, how can we go about
finding corresponding matching points and determining the rectifying transfor-

4 v01 is not a true vanishing point, since in general p0p1 and p′
0p

′
1 need not be parallel,

just bilaterally symmetric.
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(a) (b) (c) (d)

Fig. 5. Feature matching results: (a) Hessian-Laplace; (b) FAST-ER; (c) FAST-ER
with affine distortions; (d) detected features for FAST-ER+Affine. The blue lines show
all feature matches and the green lines show the inliers after finding the best epipole.

mation? Unlike traditional structure from motion, which requires 5 (calibrated)
or 7 or 8 (uncalibrated) correspondences to determine the epipolar geometry [19],
we only need to find two sets of corresponding pairs, which makes a RANSAC
search for the epipole e much more efficient.5

The traditional approach to finding such correspondences is to detect scale
and affine-covariant features [2–8] and to then perform nearest neighbor-based
matching [20] on the extracted features. In order to compensate for local per-
spective distortions, affine adaptation of features is used in Hessian-Affine and
Harris-Affine detectors [21]. However, performing affine adaptation on the in-
terest points hurts the repeatability, as it increases the likelihood that different
features map to the same descriptor.

In order to maintain the repeatability while also allowing for affine distor-
tions, we first run a feature detector with high repeatability. We then extract a
bag of features for each interest point location, using an approach similar to the
one described in [22]. We sample a set of affine transformations that allow locally
distorted patches to match better. However, rather than matching every affine
transformed patch in the query image to every patch in the other image, we
perform nearest neighbor matching while maintaining the grouping relationship
of the features, as described next.

For each query image, given a set of detected keypoints, we compute DAISY
descriptors [23] for each of the affinely deformed patches. We then query for
nearest neighbor matches using a k-d tree to speed up the search. This gives
us a sorted list of neighbors based on descriptor distance. This list can then be
scored using the ratio test [20] to find the inlier matches.

This traditional method of scoring, however, does not account for the fact
that we have multiple descriptors (affine-transformed patches) per interest point
location. Performing a k-NN query without considering this grouping can result
in repetitive matches, i.e., multiple matching descriptors from the same bag.
This prevents us from evaluating potential matches from other bags that did
not make it to the k top neighbors list. We adapt our approach by enumerating
all neighbors per query descriptor and consider only the best matched pair per
bag for entry into the ratio test. Hence, each of the k nearest neighbors that

5 Note that unlike papers that detect planar skew symmetric configurations [1–6], we
are looking for a rectifying 3D transformation, since in general we do not expect to
find a single bilateral symmetry axis.
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are returned are guaranteed to be from unique bags, which results in superior
matching performance. A few examples matches using three different interest
point variants are shown in Figure 5.

Once we have determined a set of raw correspondences, we use the Random
Sample Consensus (RANSAC) algorithm [24] to find the best epipole. For every
pair of random correspondences chosen, say (p0,p

′
0) and (p1,p

′
1), we compute

the epipole e using a cross product of the line equations and then measure the
perpendicular distances of each of the endpoints to the line joining its corre-
sponding point to the epipole. We then convert this distance in pixels to a log
likelihood assuming a contaminated Gaussian model, where the Gaussian has a
standard deviation of σ = 2 pixels and the outlier probability is ε = 0.01. The
sum of log likelihoods is then used to score all random samples, and the best
sample is used to determine the epipole.

5 Rectification and disparity range estimation

Once we have determined the epipole, we rectify the image (using the first, mini-
mal distortion, heuristic) and re-center the resulting image at the original image
center, remembering the true optic center value to later compute disparities.

In order to improve the effectiveness of the edge matching algorithm which is
described in the next section, we use the inlier matches from the epipole estimate
to compute a set of plausible disparity (inverse depth) values. Recall that in this
paper, our aim is to reconstruct compact bilaterally symmetric objects rather
than extended scenes. For such objects, we expect some of the feature matches
to lie on or near the frontmost visible surface of the object. We also expect the
object to be bounded in depth, e.g., to be no more than four times as deep as
the distance between the frontmost part and the camera.

In order to compute the disparity range, we compute the disparities (horizon-
tal distances between match midlines and the optic center) for all of the matches
that are inliers to the epipolar geometry. We then discard matches whose dis-
parity is on the wrong side of the epipole (and hence have negative depth). From
the remaining matches, we find the 80% percentile largest disparity (likely front
of the object), and set the disparity range to 25%–130% of this value. This cor-
responds to the assumptions that the object can be no more that four times as
deep as the distance to camera and that it cannot have small protrusions more
than one third this distance.

Figure 2b shows an example of the inlier and depth range computation and
Figure 8b (and the supplementary materials [30]) show some additional exam-
ples. The vertical blue line shows the disparity corresponding to the 80% dis-
parity for all matched epipolar correspondences. The vertical red line shows the
(horizontal) location of the optic center after rectification. The two vertical green
lines show the allowable disparity range. Matches whose midpoints fall outside
the range defined by the vertical green lines are considered not part of the object.
The horizontal match lines for such correspondences are drawn in red, while the
“object inlier” correspondences are drawn in green.
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(a) (b) (c) (d) (e) (f)

Fig. 6. Curve matching results: (a) cost image generated from all pairs of matching
edges with the red line showing the winner on each scanline; (b) the corresponding
edge matches, color-coded by depth. (c) the same cost image with the results of ver-
tical dynamic programming with (d) the corresponding edge matches; (e) the cost
image associated with running an intra-scanline dynamic program starting inside each
inter-edge interval, along with the dynamic programming solution (red) and the mid-
lines (disparities) for all the matches; (f) the corresponding edge matches. Additional
examples are included in the supplementary materials [30].

6 Curve matching

Once we have rectified our image and computed a plausible disparity range,
we could use various techniques to recover a dense 3D model of the object. The
most common approach [7, 8] is to use dense pixel-based stereo matching. A lot of
our objects, however, have large textureless areas or photometric inconsistencies
such as reflections. For this reason, we explore the use of edge and curve-based
matching, as a set of techniques complementary to pixel-based stereo.

Over the years, a number of edge-based stereo algorithms have been devel-
oped [25]. For example, Ohta and Kanade [26] develop a dynamic programming
algorithm that encourages smoothness in disparities both within scanlines and
along curves. Collins [27] introduces the notion of a plane sweep and matches
binary edges in scenes such as surveillance video. None of these techniques, how-
ever, admit a simple mechanism or extension for enforcing that matches are
symmetric, which is a fundamental constraint we can exploit in our domain to
make our matches more reliable.

Note, however, that occluding contours for rounded symmetric objects need
not be symmetric counterparts even though locally they may have similar vi-
sual appearance under a mirror transformation. In fact for many symmetric 3D
objects, the symmetric counterpart could either be self occluded or may not pro-
duce a salient image curve. This inability to accurately reconstruct the occluding
contours is a limitation of our method as well as prior methods [7, 8].

Recall from Section 3 that the disparity (inverse depth) between a point in
our original image and its corresponding point in the mirror-reflected image is
twice the horizontal displacement between the midpoint of the equivalent within-
image correspondence and the optic center (Figure 3). A simple way to determine
correspondences is to have potential matches on each scanline “vote” for their
midpoint and to then pick the midpoint with the highest score as indicating the
desired disparity.

Finding potential matches: We first split all detected image curves to
generate y-monotone segments to ensure that each segment intersects a scanline
at most once. We then match all pairs of curves after pruning pairs whose scan-
line intervals do not overlap or overlap very little. Since the image is rectified,
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pixels where matching curves meet each scanline must correspond. We perform
two simple tests to check the plausibility of curve matches under bilateral sym-
metry. We check whether under symmetry, the polarity of the intensities around
the matching edge (or ridge) pixels agree and also whether the local gradient
orientation of the 2D curves at these pixels are similar. A curve pair is assigned
a matching score equal to the number of pixels where both conditions are sat-
isfied. Using these scores, we then compute K = 10 nearest neighbors for every
curve in the image and retain the reciprocal matches, i.e., any match between
curves c0 and c1 where c0 is c1’s neighbor and vice versa. The set of filtered
curve correspondences specifies a set of potential pixel correspondences, each of
which can vote for their midpoints on the respective scanlines.

Figure 6a shows the resulting cost image for each scanline, where darker colors
indicate more votes and the red pixel in each row indicates the winning disparity.
This process is analogous to the techniques that vote for axes of symmetry in
determining bilateral planar skew symmetry [1–5].

If we use this disparity to select matches on each scanline, we can reconstruct
a sparse “ribbon-like” 3D model of the object, where the depths at each scanline
are restricted to a small range (Figure 6b). We can improve the quality of the
results by running a dynamic programming algorithm (DP) vertically across the
scanlines, which has the effect of smoothing out the computed midline and hence
removing smaller isolated errors (Figure 6c–d). While this approach works for
some objects, it often fails to match all of the corresponding curves.

An alternative to the simple voting scheme is to run a two-stage dynamic
programming (DP) algorithm, which we describe next. First an intra-scanline
DP step is performed to estimate smooth disparity variation within each scanline
while enforcing both ordering as well as uniqueness constraint amongst its pixels.
The second stage performs DP across scanlines to encourage the continuity of
curve-to-curve correspondences across scanlines.

Intra-scanline Dynamic Programming: For a horizontal scanline, we
wish to compute an optimal set of correspondences that satisfies the ordering and
uniqueness constraints under mirror symmetry. We formulate this as a best path
problem on a directed acyclic weighted graph, which can be efficiently computed
using dynamic programming. Unlike prior DP-based stereo matching methods
that match scanlines, we need to both match the left and right parts of the
scanline and simultaneously compute the best point to partition the scanline. We
consider all pixel correspondences for the scanline that agrees with the estimated
disparity range and find all horizontal intervals generated by these pixels on the
scanline. By picking an arbitrary partition point P within one of the intervals,
we construct a directed acyclic graph corresponding to this interval, which we
denote as GP . The corresponding best path in GP is denoted as SP .

The graph GP (V,E) is constructed as follows. Each of its nodes in V cor-
respond to those potential pixel correspondences (xl,xr) on the scanline where
xl < P.x and xr > P.x. Here P.x refers to the x-coordinate of P and the sub-
scripts l and r indicate which of the two corresponding pixels is on the left (and
right) on the scanline. The graph GP has an embedding M on a 2D square
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Fig. 7. Intra-scanline DP for a particular scanline: (a) For a partition point P , all
potential correspondences are visualized on a 2D gridM . In this figure, (Al,Ar), (Bl,Br)
and (Cl,Cr) are true correspondences. All the white nodes in M are admissible given
the point P whereas the red nodes are not admissible because both pixels lie on the
same side of P on the scanline. (b) A directed acyclic weighted graph GP is constructed
(see text for details) and an optimal path is computed from the vertex corresponding
to P to the bottom right point of the grid M in order to choose the most likely set of
correspondences under the uniqueness and ordering constraint with respect to P .

grid whose dimensions equal the length of the scanline, as shown in Figure 7.
The correspondences that do not fall within the bottom right quadrant of M as
shown in Figure 7(a) do not have to be considered. Directed edges are created
from a node u to every other node v ∈ V , as long as the following conditions
hold true. First, u.xr < v.xr and v.xl < u.xl, i.e., u must be encountered before
v when traversing outwards on the scanline starting from P . Second, no vertex
w should exist between u and v that satisfies the condition u.xr < w.xr < v.xr
and v.xl < w.xl < u.xl. This condition amounts to saying that u and v will be
connected if their 2D bounding box in M has no third vertex w lying strictly
inside it. Intuitively, as we move outwards from P , we consider the next pair of
pixels encountered or skip one or both of them. Each edge (u→ v) has a weight

we(u, v) = max(0, (∆(x)max − |(v.xr − u.xr)− (u.xl − v.xr)|)). (6)

This choice of edge weights favors paths that are most parallel to the main
diagonal of M along which all edge weights attain a maximum value. Each node
u in V also has a positive weight ws(u) assigned to the matching score of the
corresponding pixel pairs, which is equal to the matching score of their associated
curves. Any path P in this graph from P to the bottom right corner of M gives
a set of feasible correspondences and the largest set of likely candidates are
extracted by computing the longest path amongst these.

SP = arg max
P

[∑
u∈P

wn(u) +
∑

(u,v)∈P

we(u, v)
]
. (7)

The intra-scanline DP is performed for every interval on each scanline. The
maximum score and the corresponding best paths for each interval is stored and
used for propagating information across adjacent scanlines in the next stage.
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Dynamic Programming Across Scanlines: Each interval for which an
intra-scanline DP problem was solved previously, now serves as a node in a
new weighted directed acyclic graph. All intervals on a scanline are connected
to intervals on the scanline below it via directed (top-down) edges. Each node
is given a unary weight equal to the corresponding interval’s score computed
previously during the intra-scanline DP stage. For each edge between nodes j
and k, we set the edge weight as wjk = max(0, 1− njk

κ ), where njk is the number
of curve-pairs present in both intervals corresponding to j and k. We set the
parameter κ = 5. This favor selecting interval pairs on adjacent scanlines having
many curve pairs in common. For interval pairs that do not share common
curve pairs, the weight is set inversely proportional to the x-displacement of the
midpoints of the two intervals. This encourages similar disparity changes across
scanlines. Finally, the longest path between nodes corresponding to the top and
bottom scanline is computed and this produces the final set of curve matches.

Figure 6e shows the cost values computed for each scanline interval in this
two-staged algorithm. The red lines overlaid on each scanline are the mid-lines
corresponding to matched edges. The associated depth map shown in Figure 6f
indicates that the new algorithm matches more edges in the curved regions of
the car than the simpler one-pass algorithm.

7 Experimental results

To determine the best feature detector for our application, we evaluated a va-
riety of popular feature detectors (MSER, Laplace, Harris, FAST-ER, Hessian,
Hessian-Laplace, Hessian-Affine, and Edge Foci) [21, 28, 29]. For detectors that
do not estimate a characteristic scale, we computed features at different levels
of an image pyramid. As noted in Section 4, we found that affine adaptation
of the interest points hurts the repeatability of Hessian-Affine points. MSER,
Edge Foci and the Laplace variants produced middle of the pack results while
FAST-ER produced the most repeatable interest points.

In order to account for local affine distortions, we generated affine trans-
formed versions [22] of the FAST-ER [28] interest point patches. This produced
the best performance in terms of epipolar inliers. The affine transformations can
be characterized by ellipses with varying tilt angles and scales. In our experi-
ments, we sampled four different scalings of the ellipse along the horizontal axis
in increments of 0.25 to generate the affine distortions. Since most of the images
were upright, varying the tilt angles did not provide much benefit. After interest
point extraction, we perform nearest-neighbor matching, as described in Section
4. Figure 5 shows the point matches for the Hessian-Laplace, FAST-ER, and
FAST-ER with affine distortions, along with the results for FAST-ER+Affine.
Additional results can be found in the supplementary material [30].

Figure 8 shows some of the images we used for testing our algorithms along
with the results of using our best variants, namely FAST-ER+Affine feature de-
tector and descriptor, the inlier disparity range computation, and the two-stage
DP (intra-scanline and inter-scanline) algorithm used to compute matching edges
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(a) (b) (c) (d)

Fig. 8. Some additional results: (a) epipolar geometry from matched points; (b) rec-
tified image with depth range and inlier matches; (c) extracted curves; (d) recovered
depths for matched curves. See the supplementary materials [30] for even more results
and some 3D animations.
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and their disparities. As you can see, our algorithms successfully estimate the
direction of symmetry (epipole) for these images along with reasonable disparity
ranges for the objects. They also correctly match a large number of edges under
challenging conditions that include textureless regions and background clutter.
For well textured scenes, such as for the fourth row in Figure 8, dense pixel-
based matching may work better [8]. However, our technique is complementary
to theirs and can compute a sparse set of matches more reliably which is impor-
tant when the photometric cues are less reliable as in our example images.

The supplementary materials include additional examples, as well as video
animations that can better visualize the recovered depth maps [30]. Our method
sometimes fails to match enough features to accurately recover the axis of sym-
metry and can have difficulty dealing with highly repetitive patterns which may
overwhelm the curve matcher. Although the ordering constraint in our curve
matching approach is beneficial in most cases, it can produce erroneous results
for certain 3D objects such as the chair shown in the sixth row in Figure 8. Also
as discussed earlier, the occluding contours for symmetric rounded objects need
not be symmetric and in such cases, the depths computed by our method at
pixels on the occluding contour can be inaccurate.

8 Conclusions

In this paper, we have developed a system to detect and reconstruct bilater-
ally symmetric 3D objects with interesting 3D structure. Our system first ex-
tracts highly repeatable keypoints and then generates descriptors from affinely
deformed patches around these keypoints. It then determines the direction of
symmetry using pairs of corresponding points, rectifies the image, and then com-
putes a plausible disparity range based on the spatial extent of the inliers. We
then use a novel two-stage dynamic programming algorithm to match extended
curves extracted from the rectified image. This allows us to reconstruct texture-
less, specular objects which are traditionally problematic for pixel-based stereo.
In the future, we would like to combine curve-based matching with pixel-level
matching and also explore foreground segmentation and the use of the recovered
sparse 3D geometry to aid the recognition of 3D symmetric objects.
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