
Graph Cut Algorithms in Vision, Graphics and Machine Learning
An Integrative Paper

Sudipta N. Sinha { ssinha@cs.unc.edu}
University of North Carolina at Chapel Hill.

Abstract
This integrative paper studies graph-cut and network flow
algorithms on graphs and compares its applications to-
wards solving diverse problems in Computer Vision, Com-
puter Graphics and Machine Learning. The following three
papers form the core of this comparative study.

• ’An Experimental Comparison of Min-Cut/Max-
Flow Algorithms for Energy Minimization in Vi-
sion’ by Boykov et.al.[1] reformulates a variety of
problems in computer vision namely image restora-
tion, stereo and segmentation into energy minimization
problems and solves them using graph-cut algorithms.

• ’Graph Cut Textures: Image and Video Synthesis
Using Graph Cuts’ by Kwatra et. al. [4] proposes
a new algorithm for image and video texture synthesis
in the area of Computer Graphics. At the core of their
method is a graph-cut technique for computing opti-
mal seams across multiple image patches which are to
be blended and merged together to generate the syn-
thesized textures.

• ’Semi Supervised Learning using Randomized
Mincuts’ by Blum et.al. [5] proposes a graph min-
cut based approach to the machine learning problem
of combining labeled and unlabeled data to do semi-
supervised learning.

1. Introduction
Network flow algorithms studied in the field of combinato-
rial optimization find widespread applications in optimiza-
tion problems that can be represented by graphs contain-
ing nodes and arcs between these nodes. Although network
flows are used to solve problems in physical networks, often
a large variety of problems which have no inherent physical
network can also be modeled using a network and a notion
of flow in such a network. For instance the flow of liquid
in pipes, bytes on a communication network or vehicles on
highways can be modeled as flow networks. In such flow
networks, one often needs to compute the maximum rate at
which material flows in the flow network, (the maximum

flow problem). Related to it is the question of cuts in flow
networks, ie. the problem of determining a set of edges of
total minimum capacity, which if removed will disrupt the
flow in the network. The max-flow and min-cut problem
will be studied and its applications to three different prob-
lems in Computer Vision, Graphics and Machine Learning
will be described and compared in this paper. In each case,
the original problem is transformed into a graph-cut prob-
lem which is in turn solved by computing the maximum
flow on flow networks.

The rest of this paper is organized as follows. In Sec-
tion 2, the background theory of the Max-flow problem is
described along with an overview of the algorithms used to
solve it. The theory of Markov Random Fields is presented
in the context of the problems we study. Next in Section 3,
4 and 5, the specific problems are described ie. how each
of them are reformulated as graph-cut problems and solved
using max-flow algorithms. Section 6 investigates the moti-
vation for using the graph-cut approach and Section 7 com-
pares the three graph cut approaches. Finally conclusions
and the effectiveness of the graph cut approach in the re-
spective problem domain are discussed in Section 8.

2. Background
A flow network G(V,E) is formally defined as a fully con-
nected directed graph where each edge (u, v) ε E has a pos-
itive capacity c(u, v) ≥ 0. Two special vertices in a flow
network are designated the source s and the sink t respec-
tively. A flow in G is a real-valued function f : V XV → R
that satisfies the following three properties:

• Capacity Constraint:
For all u, v ε V , f(u, v) ≤ c(u, v).

• Skew Symmetry:
For all u, v ε V , f(u, v) = −f(v, u).

• Flow Conservation:
For all u ε (V -{s, t}),

∑
vεV f(u, v) = 0.

The value of a flow is defined as |f | =
∑

vεV f(s, v) ie. the
total flow out of the source in the flow network G.

1

v2

v
1

v3

v4

s t

11/16

8/13

10
1/4

4/9

12/12

11/14

7/7

4/4

15/20

Figure 1: (a) The figure (taken from Cormen et. al. [10]
shows a flow network G(V,E) with a valid flow f . The
values on the edges are f(u, v)/c(u, v). The current flow
has value 19, it is not a maximum flow.

2.1. The Max-Flow and Min-Cut Problem
The max-flow problem is to find the flow of maximum value
on a flow network G. A s-t cut or simply cut of a flow net-
work G is a partition of V into S and T = V −S such that s
ε S and t ε T . For a given flow f , the net flow across the cut
(S,T) is defined as f(S, T) =

∑
xεS

∑
yεT f(x, y). Using

a similar notation the capacity of a cut (S, T) is defined as
c(S, T) =

∑
xεS

∑
yεT c(x, y). A minimum cut of a flow

network is a cut whose capacity is the least over all the s-t
cuts of the network.

An example of a flow network with a valid flow is shown
in Figure 1.

Theorem 1 The max-flow min-cut theorem : If f is a flow
in a flow network G = (V,E) with source s and sink t then
the value of the maximum flow is equal to the capacity of a
minimum cut. Refer to Cormen et. al. [10] for the proof.

The intuition behind the proof is as follows. The maximum
flow must saturate edges in the flow network such that no
further flow can be pushed. These saturated edges must lie
on one of the min-cuts. This result allows one to compute
the minimum cut of a flow network by first solving for the
max-flow, for which polynomial time algorithms exist.

The single-source single-sink max-flow problem de-
scribed above is a specific case of the more general mul-
tiway cut problem where there are k terminals and a mul-
tiway cut is a minimum set of edges which separates each
terminal from all the others. It has been shown that if k ≥ 3,
the problem is NP-Hard. Some of the graph cut applications
that we shall investigate in this paper will indeed require ap-
proximation algorithms for the multiway cut problem.

2.2. Max-Flow and Min-Cut Algorithms
The polynomial algorithms for the single-source single-sink
max-flow problem can be divided into two classes, algo-
rithms based on the Ford Fulkerson method [8] and those
based on the “push-relabel” method [7]. The two contrast-
ing approaches are described below. An approximation al-

gorithm for the multiway cut problem will be described later
in the context of the chosen problems, in Section 3.6.

The intuitive idea behind the Ford-Fulkerson method is
that starting with zero flow ie. f(u, v) = 0 for all u, v ε
V , the flow can be gradually increased by finding a path
from s to t along which more flow can be sent. Such a path
is called an augmenting path, and once it has been found,
the flow can be augmented along this path. The process if
repeated, must end after a finite number of iterations after
which no augmenting paths between s and t exist anymore.
A typical algorithm of this type maintains for a given flow
f , the residual graph of G, called Gf whose topology is
identical to G but whose edge capacities stores the residual
capacity of all the edges, given that there is already some
flow in them. The search for an augmenting path at the ith

iteration is done on the current residual graph Gfi
. Once

an augmenting path is found, the maximum amount of flow
that can be sent down it, fincr must saturate at least one of
the edges of this augmented path. The new flow at the end
of the iteration will be fi + fincr.

The running time complexity of different algorithms will
in general vary depending on how the augmenting path is
chosen. Dinic algorithm [9] that uses breadth-first search to
find the shortest paths from s to t on the residual graph, has
an overall worst case running time of O(n2m), n being the
number of nodes and m being the number of edges.

In contrast to the Ford-Fulkerson method where aug-
menting the flow operates on the complete residual graph,
the Push-Relabel algorithms operate locally on a vertex at
a time, inspecting only its neighbours. Unlike the Ford-
Fulkerson method, the flow conservation property is not sat-
isfied during the algorithm’s execution. The intuitive idea
here is to associate a notion of height along with all the
nodes in the network. The height of the source and sink are
fixed at |V | and 0 respectively while at the start all other ver-
tices are at height 0. The algorithm starts by sending flow
down from the source and the amount of flow sent, saturates
all the outgoing edges. All intermediate nodes have a buffer
or a reservoir that can store excess flow. Nodes with positive
excess flow are said to be overflowing nodes. Overflowing
nodes try to push the excess flow downhill. However when
an overflowing node finds the edges to its neighbours at the
same height as itself saturated, it increments its own height,
a process which is called “relabeling”. This allows it to get
rid of the excess flow. The algorithm terminates when none
of the nodes in V are overflowing. Often excess flow accu-
mulated in the interior nodes are sent back to the source by
relabeling these nodes with height beyond |V |.

The generic push-relabel algorithms thus have two basic
operations - “push” flow and “relabel” an overflowing node
and Cormen et. al. proves that a generic push-relabel style
algorithm has a O(n2m) worst case running time, and there
are certain O(n3) algorithms in this class. [7, 8] provide

2

details on these various algorithms, data structures chosen
and practical trade-offs encountered in actual max-flow im-
plementations.

2.3. Markov Random Fields
This section briefly introduces the theory of Markov Ran-
dom Fields (MRF) as it will be relevant in understanding the
common thread between the three papers chosen for study.
Markov Random Fields is a generative model often used
in Image Processing and Computer Vision to solve labeling
problems. A Markov Random Field consists of three sets,
a set S of sites, a neighbourhood system N and a set (also
called field) of ramdom variables F . The neighbourhood
system N = {Ni | i ε S} where each Ni is a subset of sites
of S which form the neighbourhood of site i. The random
field F = {Fi | i ε S} consists of random variables Fi that
take on a value fi from a set of lables L = {l1, l2, . . .}. A
particular set of labels, often denoted by f (which can be
thought of as the joint event {F1 = f1, F2 = f2, . . .}) is
called a configuration of F . The probability of a particu-
lar configuration f ie. P (F = f) must satisfy the Markov
property in order for F to be a Markov Random Field.

P (fi|fS−i) = P (fi|fNi
), ∀ i ε S.

This means that the state of each random variable Fi de-
pends on the state of its neighbours, ie. FNi

= {Fi| i ε Ni}.
However it has also been shown that the probability of a
particular configuration is proportional to the sum of clique
potential VC over all the cliques in N . The clique potential
is obtained from prior probabilities of a particular labeling
of the sites in the clique C.

Markov Random Fields are used to model labeling prob-
lems where an optimal labeling is desired. From a proba-
bilistic perpective, one wishes to estimate the configuration
f based on observed data D (could be noisy or incomplete)
that maximises the likelihood function, P (D|f). Using
Bayes Theorem, this likelihood function can be expressed
as an energy function E(f) and the maximum a posterieri
(MAP) estimate of f should maximize this energy function.

Different MRF’s differ in a choice of the neighbourhood
system and the prior probabilities. In vision and image pro-
cessing, where S, the set of sites often coincides with the
set of regular grid of pixels and voxels, 4-neighbourhood or
8-neighbourhood systems on a 2D grid or 6-neighbourhood
or 26-neighbourhood systems on a 3D grid are common.
Morever, often a labeling with the following properties is
desired; it should be locally constant or smooth but should
also allow for discontinuities (at region boundaries). When
one chooses clique potentials to make the desired labeling
piecewise continuous, the resulting MRF is called Gener-
alized Potts Model MRF (GPM-MRF). This formulation is
useful for Vision and will be discussed in the next section.
For more details on MRF’s, refer to [11].

The problem of texture synthesis in graphics [4] can also
be modeled as a MRF where sites of the MRF would typi-
cally be pixels or group of pixels in the output texture and
the clique potentials in the MRF would depend on the simi-
larity of pixel neighbourhoods in the input texture. The goal
here is to generate an output texture perceptually similar to
the input texture. Perceptual Similarity is essentially a la-
beling and grouping problem and is hence well modeled by
MRFs.

Semi-Supervised Learning [5] is another labeling prob-
lem where the set of training examples form the set S, and
similarity between each pair of examples in the training set
is modeled using a neighbourhood system. The goal is to
obtain a labeling or classification which intuitively sepa-
rates dissimilar examples and clusters similar examples.

3. Energy Minimization Problems in
Computer Vision

3.1. Problem Statement and Goal
Boykov et. al. [1] solve various computer vision prob-
lems which can be posed as energy minimization problems.
Some examples of such problems are image restoration,
stereo, multiple view reconstruction, and object segmen-
tation. As explained in the previous section, these tasks
can all be classified as labeling problems where visual con-
straints are typically contextual and reflect a choice of priors
in the neighbourhood systems. Finding the most likely la-
beling translates to optimizing an energy function. The au-
thors solve this energy minimization problem by transform-
ing it into a multi-way cut problem on a graph. However the
multi-way cut problem is NP-Hard and they propose an ap-
proximation algorithm that produces a cut which minimises
the original energy function in a strong sense.

The generic energy minimization framework for labeling
problems is now described followed by the specific exam-
ples of image restoration, stereo and object segmentation.
We conclude this section by a description of the approxi-
mation algorithm which uses max-flow iteratively to solve
the multi-way cut problem.

3.2. The Energy Minimization Framework
As described in Section 2.3, a large number of computer
vision problems try to assign labels (such as intensity, dis-
parity, segmentation regions) to pixels based on noisy mea-
surements. In the presence of uncertainties, finding the best
labeling becomes an optimization problem. Certains visual
constraints are often used to constrain these labels. In vi-
sion and image processing, these labels often tend to vary
smoothly within the image, except at some kind of region
boundaries where discontinuities are allowed. The fact that
a particular pixel label depends on the labels of its neigh-

3

bours allows modeling the optimization problem as a MRF.
Boykov et.al. [2] show that finding the most likely label-
ing for some given data, is equivalent to seeking the MAP
(maximum a posteriori) estimate. In order to solve a partic-
ular vision problem, a suitable neighbourhood system needs
to be chosen and prior probabilities for particular labelings
in the neighbourhood system need to be assigned. Different
choices for these entities yield different classes of energy
functions and hence the term energy model is used to re-
fer to this problem domain specific choice. Two common
energy models are described below.

• Potts Interaction Energy Model

E(I) =
∑

pεP

|Ip−Io
p |+

∑

(p,q)εN

K(p,q).T (Ip 6= Iq) (1)

where I = {Ip| p ε P} are the unknown true labels over
the set of pixels P and Io = {Io

p | p ε P} are the ob-
served labels corrupted by noise. The Potts interaction
are specified by K(p, q), the penalties for label discon-
tinuities between adjacent pixels. The function T () is
an indicator function. This is a good model where the
labels are likely to be piecewise constant with disconti-
nuities at boundaries. The Pott energy can be optimally
solved for binary labeling using max-flow, however the
multiple label case is NP-Hard.

• Linear Interaction Energy Model

E(I) =
∑

pεP

|Ip−Io
p |+

∑

(p,q)εN

A(p,q).T (Ip 6= Iq) (2)

where constants A(p,q) store the importance of the in-
teraction between neighbouring pixels p and q. In
contrast to the Pott Energy Model, the Linear Inter-
action Energy produces labelings which are piecewise
smooth but with discontinuities at boundaries.

Figure 2 (taken from [2] is an example of a graph con-
structed from the Pott Energy Model. The graph G contain
two kinds of vertices: p-vertices (pixels or voxels which are
the sites in the associated MRF) and l-vertices (which coin-
cide with the labels and will be terminals in the graph cut
problem). All the edges present in the neighbourhood sys-
tem N are edges in G. These edges are called n-links. Edges
between the p-vertices and the l-vertices called t-links are
added to the graph. t-links are assigned weights based on
the data term (first term in Equations 1, 2) while n-links
are assigned weights based on the interaction term (second
term in Equation 1, 2). While n-links are bi-directional, t-
links are uni-directional, leaving the source and entering the
sink. Figure 2 shows the graph constructed for binary label-
ing on a small 3x3 pixel image.

In the multiple label case, the multiway cut should leave
each p-vertex connected to one l-vertex. This ensures that

Figure 2: All figures were taken from Boykov et. al. [1]. (a)
The figure shows a graph G(V,E) constructed for binary
labeling problem for a 3x3 pixel image on the left. (b) A
cut along with the corresponding labeling is shown on the
right. (c) The figure shows a graph G(V,E) constructed
from the energy function in Equation 1. The topology of the
graph is automatically determined by the energy function
and different problem that use the same energy model would
result in an identical graph construction.

every multi-way cut which separates all terminals, must cor-
respond to a valid labeling ie. a configuration of the associ-
ated MRF. The minimum cost multiway-cut will minimize
the energy function in Equations 1, 2 where the severed n-
links would correspond to the boundaries of the labeled re-
gions. The approximation algorithm which finds this multi-
way cut, is called the α-expansion algorithm [2]. It involves
iteratively executing max-flow considering a particular la-
bel, (the α label) one at a time and is discussed in Section
3.6.

3.3. Image Restoration
The image restoration problem aims at recovering the origi-
nal pixel intensities of an image when the observed image is
noisy. Here the labels are the image intensities and the most
likely labeling is obtained by minimizing an energy func-
tion similar to the ones described in Section 3.2. The visual

4

Figure 3: Image Restoration Examples taken from Boykov
et. al. [1]. (a) Synthetic data : An example of a noisy image
and its restored version. (b) & (c) Real data; An example of
a noisy image and its restored version.

constraints exploited here are the fact that image intensities
tend to vary smoothly in most images except at boundaries.
Both the Pott Energy as well as Linear Interaction Energy
model yields reasonable results. The actual choice of K(p,q)

and A(p,q) determines the degree of smoothness in the re-
stored images. Figure 3 shows examples from [1].

3.4. Stereo
Dense stereo is a popular method for 3D Reconstruction
from two calibrated views of a scene. It involves first re-
covering matching pixels (pixels corresponding to the same
3D feature) in the two views and then recovering the depth
of the 3D point by triangulation (intersecting rays back-
projected from the two matching pixels). Finding accu-
rate matching pairs for all pixels is a difficult problem to
solve accurately because often such matching can be am-
biguous depending on factors like camera baseline, amount
of texture in the scene or the degree of specularity of ob-
jects in the scene. In a stereo pair, matching pixels are re-
covered using disparities. Every pixel p1(i, j) in the first
image has a particular disparity d with respect to the match-
ing pixel p2(i + d, j). A method called image rectification
can ensure that corresponding pixels are always on identi-
cal scanlines in the rectified image pair. The problem of
recovering an accurate disparity image can be posed as an
energy minimization problem using the same MRF frame-
work we have been studying. The problem of stereo is iden-
tical to the image restoration problem except that here the
labels are disparity values. Disparity in a stereo pair tends to
vary within a fixed range and can be discretely sampled. It
also tends to vary smoothly over the image except at depth-
discontinuities. Energy models like the Pott Energy, shown
in Equation 1 can incorporate such contextual information
within the MRF framework.

The stereo problem is harder compared to image restora-
tion because of the presence of occlusions. Occlusion occur
when 3D points are visible in only one of the stereo im-
age pairs and are typically found near depth-discontinuities

Figure 4: Stereo examples taken from Boykov et. al. [1].
One of the images in a stereo pair alongwith the computed
disparity image. Top Row : Tsukuba dataset. Bottom Row
: Tree dataset.

in the scene. Occlusions which make the visual correspon-
dence problem harder, can be explicitly modeled in the En-
ergy Minimization framework by a modified labeling prob-
lem of the following type. Sites in the MRF for this modi-
fied problem do not represent image pixels but pair of pixels
which can potentially correspond. The set of labels is {0, 1}
where 0 indicates either of the pixels are occluded and 1 in-
dicates that the pair of pixels are matching. The new energy
function is :

E(f) = Edata(f) + Eocc(f) + Es(f)

where
Edata =

∑

l(p,q)=1

D(p,q)

is the term which imposes a penalty based on intensity dif-
ferences of matching pixels p and q.

Es =
∑

{(p,q),(p′,q′)}εN

K{(p,q),(p′,q′}.T (l(p,q) 6= l(p′,q′))

is the smoothness term which forces adjacent pixels to have
the same or relatively close disparities.

Eocc =
∑

pεP1

⋃
P2

Cp.T (p is occluded)

is the new term, the occlusion penalty term which imposes
a penalty for making a particular pixel p in the stereo im-
age pair P1 or P2 occluded. T () is the indicator function
in the above formulation. Minimizing the energy function
is still NP-Hard but an approximate algorithm based on α-
expansion computes a local minimum within a constant fac-
tor of the global minimum by solving max-flow on an asso-
ciated graph.

5

Figure 5: Image Segmentation examples taken from
Boykov et. al. [1]. Interactive user input is used to guide
the segmentation.

3.5. Segmentation
The Pott Energy function, (see Equation 1) comes up again
in the context of image segmentation where the goal is to
group image pixels into logical groups or segments which
may represent objects in the scene. In 3D Segmentation, the
grouping is done on voxels in volumetric data as is typically
encountered in medical imaging. Segmentation is typically
posed as a binary labeling problem where {foreground,
background} constitutes the set of labels typically assigned
to pixels or voxels. The binary labeling problem for the
Pott Energy function as mentioned earlier can be optimally
solved by a single execution of max-flow. The graph con-
struction and max-flow formulation is quite identical to the
one for the image restoration problem (refer Section 3.3. To
get accurate segmentations, user input is provided into the
labeling problem by allowing the user to pre-label (these la-
bels are not allowed to change) some pixels as foreground
and some as background. This is illustrated in Figure 5.

3.6. The α-expansion algorithm
Boykov et. al. [2] proposes a fast approximatation algo-
rithm for the multiple label energy minimization problem
using a cycle of α-expansion moves. It starts with an ar-
bitrary labeling and performs iterative optimization cycles
until the process converges. Each cycle consists of iterat-
ing over the set of labels, running the α-expansion move
once for every label α. This involves finding a new labeling
f ′ obtained by increasing the number of α labels, which is
better than the current labeling f , ie. E(f ′) ≤ E(f). The
algorithm will converge when in a particular cycle, no better
f ′ cannot be found.

Boykov et. al. [2] analyze the algorithm and prove
bounds as well as state necessary properties of the penalty

functions under which the bounds are correct. In this paper,
we shall only describe the max-flow graph construction for
the α-expansion step and see how executing max-flow on it
yields f ′ from f .

Figure 6: Graph Construction for the α-expansion step.
(taken from Boykov et. al. [1]) and edge cost for the var-
ious edges in the graph are shown in a table. Note that the
notation Dp(label) denotes the data penalty term whereas
V (lp, lq) denotes the second order penalty term for a pixel
pair (p, q) ε N .

The graph generated for each α-expansion step, Gα will
be different and will depend on the partition P of the pix-
els induced by the current labeling f . The vertices of this
graph consist of pixels in the image and two terminal ver-
tices denoted by α and ᾱ. For every pair of pixels p,q in
the neighbourhood system N , which are labeled differently
under f (ie. fp 6= fq), an auxilliary vertex a(p,q) is created
with a triplet of edges to vertices p , q and ᾱ. Following

6

Figure 7: Image Texture Synthesis example from Kwatra et.
al. [4]. The texture synthesis problem involves two parts (1)
Placing small patches of the input texture at various relative
offsets with respect to each other (2) Computation of a seam
that allows a new patch to be smoothly and ’seamlessly’
merged into the existing patches.

the notation used in Section 3.2, t-links and n-links are con-
structed as shown in Figure 6 (1D version for simplicity).
The table shows how edge capacities are set up.

A cut on this graph must sever exactly one tα
p -link for

every pixel p. This gives rise to a new labeling f ′ after all
the edges belonging to the cut have been removed. Then
p is labeled α if its tαp -link is intact and its old label if the
tαp -link is severed.

4. 2D and 3D Texture Synthesis
4.1. Problem Statement and Goal
2D texture synthesis addresses the problem of generating
larger textures from small texture samples with identical
perceptual properties. Texture synthesis can also be done
in 3D by treating spatio temporal texture volumes in the
same way as 2D image patches. The texture synthesis prob-
lem has two parts. First multiple texture patches need to be
placed relative to each other in an optimal way. Next, these
patches must be combined by computing optimal seams be-
tween two neighbouring patches. Kwatra et. al. [4] compute
these seams using a graph-cut approach.

4.2. Patch Fitting and Seam Computation
Figure 8 shows the graph construction for various scenarios
of patch fitting. Labels in this problem indicate whether a
pixel in the output texture patch needs to come from the old
patch or the new texture patch. The boundary of the new
patch with the old texture is the new seam that is computed.
The simplest scenario is depicted in Figure 8(a) where there
are only two overlapping blocks. A grid graph where ver-
tices represent pixels is constructed for only the overlap-
ping region in the two texture patches. There are two ad-
ditional nodes A and B representing the old and the new

Figure 8: Graph Construction for Texture Synthesis (fig-
ures taken from Kwatra et. al. [4]). (a) Recovering the
visually optimal seam by computing the minimum cut in
the constructed graph (b) Computing the new seam when
old seams are present in the existing patch. (2) Seamlessly
merging a new patch overlaying pixels from an old texture
patch. Bottom : Video texture patches are spatio temporal
volumes and seams are 2D surfaces embedded in the 3D
volume. Seam computation using graph-cuts is similar to
the 2D case.

7

patch. Some of the boudary pixels of the two patches are
constrained by assigning infinitely high edge weights to the
edges connecting them to A and B respectively. The edge
connecting pixels (p, q) in the grid graph are given the the
edge cost

M(p, q, A,B) = ||A(p) − B(p)|| + ||A(q) − B(q)||

. The original texture synthesis problem is transformed into
computing a minimum cost A-B cut in this graph that is
equivalent to computing the most likely binary labeling that
yields an imperceptible seam. The min-cut is computed by
running max-flow algorithms as we have studied earlier.

The simple formulation described so far does not han-
dle the case when old seams are present in the old tex-
ture patch. This situation illustrated in Figure 8(b) will
occur when texture patches are being added iteratively to
build large textures. The graph construction for this sce-
nario is slightly different. The node B is still used to rep-
resent the new patch whereas A represents the collection of
old patches present in the current texture. This graph con-
tains additional nodes called seam nodes (see Figure 8(b))
which correspond to the old seams, computed during pre-
vious graph cut iterations. Each seam node spq between
pixels p and q is triply connected to B, p and q through
edges with weights M(p, q, Ap, Aq), M(p, q, Ap, B) and
M(p, q, B,Aq) respectively. A min-cut on this new graph
will automatically decide whether to leave the old seam in-
tact (edges between such seam nodes and B will be intact
after the min-cut edges have been severed) or replace it by
the new seam at the same pixels if either of the edges be-
tween spq and its neighbours p and q are severed.

The formulation for video textures (see Figure 8) is iden-
tical in all respects except that the texture patches are now
volumes and hence the grid graph is a 3D grid graph with a
6-connected neighbourhood system.

The third scenario which is applicable to novel image
synthesis shown in Figure 8(c) involves overlaying a new
texture patch over an existing patch and seamlessly merg-
ing it into the old texture. Once again the graph constructed
corresponds to the pixels in the overlapping region and the
edges to the terminal nodes A and B which are left intact
after the min-cut partitions the graph decide which patch
contributes information for that particular pixel. Seams are
usually more noticeable in low frequency regions, and bet-
ter seams can be computed by modifying the edge weight-
ing function to take image gradients into account. In such
a case M(p, q, A,B) is scaled by the magnitude of the one
of the component of the gradient depending on whether the
concerned edge is aligned horizontally, vertically or tempo-
rally (for video textures). This penalizes the cut from pass-
ing through a low frequency region in the image or video.

5. Learning from Labeled and Unla-
beled Data

5.1. Problem Statement and Goal
In the domain of machine learning and pattern classifica-
tion, labeled training data is often at a premium, whereas
unlabeled examples are available in plenty for most prac-
tical problems. If this unlabeled data could be automati-
cally labeled based on the smaller labeled training set, a
better classifier could be built, one which uses all the train-
ing data. The primary challenge here is to achieve accurate
labeling even when the set of labeled examples is small.
The approach towards solving this problem involves build-
ing a graph on the whole training set using edge weights to
represent similarity between examples and then partitioning
the graph in a way that best explains the known labeled ex-
amples. Blum et. al [5, 6] perform this partitioning using
randomized minimum-cuts on the constructed graphs and
provide theoritical justification for their chosen approach.

5.2. Graph Mincuts Approach
Given a set of (positive and negative) labeled examples L,
and a set of unlabeled examples U in a training set, the goal
is to find a labeling of the examples in U that minimizes the
leave-one-out cross validation (LOOCV) error of a nearest
neighbour learning algorithm, when applied to the dataset
L

⋃
U . The set L, will consist of mutually exclusive sub-

sets L+ and L−, the sets of posivite and negative labeled
examples respectively. The graph-cut approach could be
used to label examples in U , if a graph could be constructed
where edge weights are assigned using the notion of ’pair-
wise distance’, (ie. similar examples are connected through
edges with large weights whereas dissimilar example pairs
have edges with small weights). The minimum cost cut
would then partition or cluster the positively labeled exam-
ples from the negatively labeled ones in a nearest-neighbour
sense.

The basic mincut algorithm works as follows. A graph
G(V,E) is constructed where V = L

⋃
U

⋃
{v+, v−}and

E ⊂ V XV . Next edges between labeled vertices and
the terminal vertices (v+, v−) are set up as follows :
w(v, v+) = inf ∀ v ε L+ and w(v, v−) = inf ∀ v ε L−.

Edges between vertices representing all examples (both
labeled and unlabeled) are assigned some weight based
on a suitable edge weighting function. A minimum cost
(v+, v−) cut is then computed on G using a max-flow al-
gorithm by treating v+ as the source and v− as the sink
and all the edge weights as capacities. If there are multiple
min-cuts, the algorithm chooses one of them using some
well defined criteria. By removing the edges constituting
the min-cut, V is partitioned into V+ and V−, the set of pos-
itive and negatively labeled examples respectively.

8

Blum et. al. proved that this graph min-cut approach
would produce a labeling with a bounded error. This error
would be the minimum LOOCV error for an averaging k-
nearest neighbour algorithm (one that predicts a label for a
new example, based on the weighted average of the labeled
examples, for instance distance to the labeled examples).
LOOCV criteria is often used to evaluate the performance
of a classification algorithm and is computed as follows. A
single example is chosen to represent the test data, while
all the other examples make up the training set for the par-
ticular classification algorithm. Based on this training set,
the single example is classified and the success of classifi-
cation is recorded. When the above process is repeated for
every example in the original dataset, the total number of
mis-classifications is the LOOCV error.

The construction of G proceeds as follows, some met-
ric (Euclidean distance L2, Hamming distance L0 etc.) are
used to compute pair-wise distances. If two examples are
closer than a distance parameter δ, they are connected by an
edge with the corresponding distance as the edge weight.
Various strategies for choosing δ are discussed in [6, 5] (for
instance choosing δ such that size of the largest component
in G was larger than half the size of L

⋃
U worked well in

practice).

5.3. Randomized Mincuts
This graph cut framework has some limitations as far as la-
beling accuracy is concerned. If multiple min-cuts exist in
the constructed graph, the choice for the best min-cut is un-
clear and the consequent partitioning could be unbalanced
(few unlabeled examples are assigned to V+ and many to
V− or vice versa). This is likely to happen when the labeled
set is small. Also if the graph had a large number of dis-
connected components, the examples in those components
could be labeled ambiguously.

The Randomized Min-cuts algorithm [5] tries to address
these weaknesses. Artificial random noise is added to the
edge weights in the graph (described in Section 5.2) and
min-cuts are repeatedly computed. The graph topology re-
mains the same for the multiple min-cut executions. The al-
gorithm votes amongst all the min-cuts and ends up choos-
ing the one in the middle, considering how many times a
particular example was labeled positive and how many time
it was labeled negative. This gives rise to better accuracy
coverage statistics (allows one to set a confidence based on
how many min-cuts agree on the labeling of a particular
example). Morever highly unbalanced partitions are dis-
carded.

Randomization has been shown to be useful [5] only
when small well balanced cuts (boundaries) exist in the
dataset. Thus the graph construction approach needs to
be conservative by assigning edges between examples only
when they are very similar. Two approaches which have

worked well in practice are (1) building a minimum span-
ning tree (MST) on the whole dataset using pair-wise dis-
tance as edge weights (this yields a connected, sparse
graph). (2) building a δ-MST, where examples ares con-
nected if they are within a distance δ of each other. Extra
edges are added to the graph by treating the components as
nodes and computing their MST.

6. Motivation for using Graph-cuts
All the problems that have been solved using graph-cuts
have one property in common, they are all optimizing la-
belings ie. trying to compute the most likely labeling from
a very large solution space to explain some measured data.
These labels are either intensity values, disparity values in
images, objects in images, or distinct classes in large train-
ing datasets. The individual entities which are labeled are
represented as sites in the graphs and the contextual in-
formation whch constrains the labelings are used to setup
edges in the graph. In other words the probability of a par-
ticular site getting a specific label depends on the labelings
of its neighbours. This contextual information is rich in im-
ages, video, textures, large training sets and is exploited in
the graph cuts framework. The notion of a cut in such a
graph is analogous to the idea of partitioning the sites us-
ing labels. The graph construction needs to be done in a
way such that the minimum cut will yield the most likely
labeling or partitioning of the measured data. The use of
graph-cuts in the various papers studied [1, 4, 5] were justi-
fied from a MRF perspective.

While applying graph-cuts to a new problem, the as-
sumptions made in the problem transformation could place
restrictions on the solutions produced. These would in gen-
eral be problem dependent and needs to be well understood.
For eg. Boykov [2] realises that graph-cuts can only deal
with only a certain class of energy functions in the MRF
framework and Blum et. al. [5] theoritically justify that the
min-cut approach would have the same classification error
as a class of nearest neighbour learning algorithms.

7. Comparisons
The application of graph-cuts to texture synthesis, [4] and
semi-supervised learning [5] were motivated by the success
of the energy minimization framework [1] in vision. Roy
et. al. [3] had earlier proposed a solution to the n-view 3D
reconstruction problem by directly formulating it as a max-
flow min-cut problem instead of converting it first into an
energy minimization problem. Although they construct a
similar graph compared to Boykov et. al. [1], their edge
weighting function does not guarantee optimality proper-
ties.

In problems encountered in vision and graphics, there
is often an underlying regular grid structure with a clearly

9

defined notion of neighbourhood in this grid itself. This
seems to set the basic topology of the graph on which graph-
cuts are applied. In contrast, interesting issues arise in the
semi-supervised learning problem, as far as graph construc-
tion is concerned. The topology of the graph and the edge
weighting function are harder to choose and require an in-
depth analysis of properties of nearest neighbour classifi-
cation algorithms. Constructing a minimum spanning tree
on the whole training set for the randomized min-cut algo-
rithm was proven to be a good choice although less intuitive
compared to the other graph-cut formulations.

In some sense, the application of graph cuts to texture
synthesis is dual to its applications to vision problems.
Graph-cuts find optimal seams in texture synthesis by trying
to find similar pixels from different patches (the cut goes be-
tween them). However the min-cuts in vision typically co-
incide with some form of visual boundaries, either intensity
edges, disparity edges (depth-discontinuities) or segmenta-
tion boundaries. The choice of the edge weighting function
in the graph is what defines the behaviour of the cut from
problem to problem.

Similarly the formulation of the image synthesis sce-
nario [4], Figure 8(c) as a graph-cut problem is inverse to
the the object segmentation problem in images described in
Section 3.5. Note that Kwatra’s technique for integrating
the new patch into a texture which already contains multi-
ple old patches and seam is similar to a single α-expansion
step in Boykov’s algorithm (Section 3.6).

The Max-flow problem which is a dual of the mincut
problem, has no direct link with the multiway cut problem
where there is no clear notion of flow. However interest-
ingly, the α-expansion algorithm (see Section 3.6), an ap-
proximation algorithm for the multiway cut problem uses
multiple iterations of max-flow. This is why max-flow al-
gorithms are key to solving graph-cut problems.

7.1. A New Max-flow / Min-cut algorithm
It was observed that the graphs encountered within the vi-
sion and graphics problem domain, were typically sparsely
connected regular grid graphs with connections between
grid neighbours and often contained a large number of con-
nections to the source and the sink. Although efficient max-
flow algorithms have been developed in the past to deal with
special graphs (planar graphs etc.), no efficient algorithms
existed for these kind of graphs. Boykov et. al. [1] stud-
ied the performance of standard max-flow algorithms on
the ’vision’ graphs and realised that the augmenting path
algorithms could be modified to perform better on them.
Most augmenting path style algorithms always recompute
the shortest path from scratch after an augmenting path is
computed in the residual graph (see Section: 2.2. This is
a costly operation on large grid graphs since the breadth
first search needs to visit all vertices. They decided to reuse

search trees in order to compute source-sink paths for mul-
tiple iterations instead of building it from scratch everytime.

This was done by maintaining two different search trees,
one rooted at the source, and one at the sink. By growing the
trees, an augmenting path from source to sink is found when
the two trees touch each other. After the flow is augmented
along this path, the edges constituting the path are removed
and the two search trees get partitioned into forests. Sub-
sequently the tree structures are restored through a series of
operations which consist of either finding a parent for an
orphaned node (whose parent link was removed as part of
the augmenting path) or by freeing the orphaned node (such
nodes are added back to the trees, during the growth phase
of the algorithm.

Although this algorithm works much faster in practice, it
does not have a strong upper bound, its worse case time is
O(n2m|C|) where |C| is the maximum capacity, however
on most sparsely connected grid graphs, it beats the best
know push-relabel style algorithm by a factor of 2-5.

8. Summary and Conclusions
The key contribution of each of the papers studied here [2,
4, 5] is an innovative reformulation of the original problem
into a well understood graph cut and network flow problem
for which well-known algorithms are known to exist. Us-
ing clever transformations, the solution to the original prob-
lems obtained using the graph cut approach was shown to
be optimal under valid assumptions. Motivated by the ap-
plication of graph-cuts and max-flow to computer vision, a
new max-flow/min-cut algorithm was proposed, which was
shown to be faster than the best known max-flow algorithms
for the special grid graphs which are encountered in the do-
main of Vision and Graphics. This integrative paper studied
the basic theory of the max-flow problem and the classes of
algorithms used to solve it. It then presented the transforma-
tions of each of these problems into the graph-cut problems
which were thereby solved using max-flow algorithms. Fi-
nally, the common thread between all the problems were
investigated and the various graph-cut formulations were
compared against one other. This was done in order to pro-
vide insight into the power of the technique, so that it could
be applied to more diverse problems in future.

References
[1] Y. Boykov and V. Kolmogorov, “An Experimental Compari-

son of Min-Cut/Max-Flow Algorithms for Energy Minimiza-
tion in Vision”, In IEEE transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol 26, no.9, pp 1124-1137,
Sept 2004.

[2] Y. Boykov, O. Veksler and R. Zabih, “Faster approximate en-
ergy minimization via graph cuts”, In IEEE transactions on

10

Pattern Analysis and Machine Intelligence (PAMI), vol 23, no.
11, pp 1222-1239, Nov 2001.

[3] S. Roy and I.J. Cox, “A maximum-flow formulation of the n-
camera stereo correspondence problem”, ICCV 98, pp. 492-
502, 1998.

[4] V. Kwatra, A. Schodl, I. Essa, G. Turk and A. Bobick,
“Graphcut Textures: Image and Video Synthesis Using Graph
Cuts”, In SIGGRAPH 2003, pp. 277-286.

[5] A. Blum, J. Lafferty, M.R. Rwebangira and R. Reddy, “Semi-
Supervised Learning Using Randomized Mincuts”, In Pro-
ceedings of the 21st International Conference on Machine
Learning, Banff, Canada 2004.

[6] A. Blum and S. Chawla, “Learning from labeled and unla-
beled data using graph mincuts”, In Proceedings of the 18th
International Conference on Machine Learning, 2001.

[7] A.V Goldberg and R. E. Tarjan, “A new approach to the
maximum-flow problem”, Journal of the Association for
Computing Machinery, vol 35, no. 4, pp 921-940, Oct 1988.

[8] L. Ford and D. Fulkerson, “Flow in Networks”, Princeton
University Press, 1962.

[9] “Algorithm for solution of a problem of maximum flow in
networks with power estimation”, Soviet Math. Dokl., vol 11,
pp 1277-1280, 1970.

[10] T.H. Cormen, C.E. Leiserson and R.L. Rivest, “Introduction
to Algorithms”, McGraw-Hill, 1990.

[11] S. Z. Li, “Markov Random Field Modeling in Computer Vi-
sion”, Springer Verlag, 1995.

11

