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Abstract

This paper describes a novel approach for reconstructing a
closed continuous surface of an object from multiple cali-
brated color images and silhouettes. Any accurate recon-
struction must satisfy (1) photo-consistency and (2) silhou-
ette consistency constraints. Most existing techniques treat
these cues identically in optimization frameworks where sil-
houette constraints are traded off against photo-consistency
and smoothness priors. Our approach strictly enforces sil-
houette constraints, while optimizing photo-consistency and
smoothness in a global graph-cut framework. We transform
the reconstruction problem into computing max-flow / min-
cut in a geometric graph, where any cut corresponds to a
surface satisfying exact silhouette constraints (its silhou-
ettes should exactly coincide with those of the visual hull); a
minimum cut is the most photo-consistent surface amongst
them. Our graph-cut formulation is based on the rim mesh,
(the combinatorial arrangement of rims or contour genera-
tors from many views) which can be computed directly from
the silhouettes. Unlike other methods, our approach en-
forces silhouette constraints without introducing a bias near
the visual hull boundary and also recovers the rim curves.
Results are presented for synthetic and real datasets.

1. Introduction
Two well-known categories of multi-view

���
reconstruc-

tion algorithms are: (1) Shape from Silhouette (SFS) tech-
niques [1, 3], that compute a coarse shape of an object from
its silhouettes; (2) Shape from Photo-consistency based vol-
umetric methods [9, 16, 12], which recover the geometry of
complete scenes using the photo-consistency constraint [9].
Multi-view stereo algorithms too rely on photo-consistency
in order to recover dense correspondence across views and
compute scene depth.

���
reconstruction is an optimization

problem that has traditionally been solved by local [15, 12],
as well as global methods like dynamic programming [15],
variational techniques [4, 5], discrete optimization [8] etc.

In this paper we present a global approach for surface re-
construction, by imposing two types of constraints present
in color images and silhouettes. A true scene point, when
seen from different views must produce pixels with similar
colors; this is the color consistency or the photo-consistency
constraint. In the ill-posed reconstruction problem, differ-
ent scenes can be consistent with the same set of color im-
ages. Theoritically the union of all photo-consistent scenes,
the photo hull [9] is a unique reconstruction, but it is sen-
sitive to the sampling rate of 3D voxels, the range of tex-
tures in the scene and image noise. The reconstructed shape
when re-projected must coincide with the respective silhou-
ettes; this is the silhouette consistency constraint. The exact
visual hull’s silhouettes [1] should be considered, when cal-
ibration or segmentation errors are present.

SFS methods compute the visual hull [11, 1, 3]; the max-
imal shape consistent with a set of silhouettes. It can be
computed by intersecting visual cones obtained by back-
projecting silhouettes from calibrated viewpoints. Exact
polyhedral representations [3] of the visual hull as well
as volumetric ones [12] are common. Polyhedral visual
hulls [3] are watertight and efficient to compute, although
they coarsely approximate the actual shape when only a few
views are available. In fact visual hulls cannot recover sur-
face concavities as these never appear on the silhouettes.
Volumetric methods like Space Carving [9], Generalised
Voxel Coloring (GVC) [12] can reconstruct complex ob-
jects or scenes based on photo-consistency by carving away
voxels in a grid, producing a reconstruction when all incon-
sistent voxels have been removed. Photo-consistency is also
used by [7] to formulate multi-view stereo as a max-flow
problem and by [6, 14] to build energy functions, which are
minimized by graph-cuts.

Some algorithms proposed recently, combine silhouette
constraints with color consistency; [4] proposes a level-set
based variational approach; [5, 2] describe iterative mesh
deformation methods using texture and silhouette forces
while [10] incorporates them into a single cost function.
These methods do not guarantee exact silhouette consis-
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tency; in fact they could introduce a bias in the reconstruc-
tion near the visual hull boundary.

Our goal is to enforce exact silhouette constraints strictly
but without a bias, and obtain the most photo-consistent so-
lution amongst the ones which satisfy silhouette constraints
exactly. We first compute the exact visual hull [3] from sil-
houettes and then recover the rim mesh [1] from it and its
silhouttes. The rim mesh tells us how the actual surface
touches the visual hull (we assume that the actual surface is
inside it). This is used to build a geometric graph; a graph
cut on it yields by construction, one of the many possible
surfaces which satisfy the exact silhouette constraints. The
edges of this graph are now assigned costs from a photo-
consistency measure and smoothness prior. Computing the
minimum cut [18] on this graph, minimizes an energy func-
tion that produces an optimal photo-consistent smooth sur-
face along with the positions of the rims on the surface.

Sec. 2 describes the theory of visual hulls and the rim
mesh; Sec. 3 explains our max-flow formulation of the re-
construction problem and the rim mesh construction, while
Sec. 5 and 6 discusses results and conclusions respectively.

2. Theory

Figure 1: 2-view visual hull: Rims are dashed curves;
they intersect at frontier points; intersection curves are solid
curves. Cone-strips and visual cone faces are also shown.

2.1. Visual Hulls and the Rim Mesh
The visual hull is the maximal shape that projects consis-
tently into a set of silhouettes, and is obtained by intersect-
ing visual cones from the corresponding calibrated view-
points. Visual rays from a camera which grazes the true
surface tangentially give rise to a smooth continous curve
on the true surface called the rim [1, 13] or the contour gen-
erator and its projection in the image is the apparent con-
tour. Rims from different cameras intersect on the surface
at points called frontier points, which project to the respec-
tive apparent contours. The projected frontier points satisfy
the 2-view epipolar tangency constraint [1] (these are the
points of tangencies of tangents from the epipole to the sil-
houette which are also corresponding epipolar lines). The

back-projection of points on the apparent contour produces
viewing rays, each of which contributes a view edge to the
visual hull polyhedron. At least one point on the view edge
must touch the surface at a point on the rim. The view edges
from a camera form a ruled surface called a cone-strip while
the boundaries of cone strips are called intersection curves;
these lie outside the actual surface in general. The cone-
strips are made up of multiple visual cone patches each of
which has a rim segment, the part of the rim between suc-
cessive frontier points. Figure 1 illustrates these definitions
while [1, 3] provide details.

X

Y

��������

��		 Frontier Point Rim 

Z



�� ������

����

Figure 2: Top : 3-view case. Rims are dashed curves and
intersecton curves are solid lines. X, Y and Z are frontier
points. Below : The complete rim mesh. Every rim segment
occupies a single visual cone patch.

The idea of epipolar nets [10] was refined into a for-
mal representation called the rim mesh by [1]. The rim
mesh is a combinatorial arrangement of rims on the surface
(see Figure 2). Frontier points constitute its vertices and
the rim segments between successive frontier points, form
its edges. Each rim mesh edge thus corresponds to a visual
cone patch. Patches on the surface bounded by different rim
segments form faces in the rim mesh. The rim mesh itself
contains only information about the arrangement of rims
and their connectivity, not their geometric shape. The im-
age based algorithm [1] computes the rim mesh only from
silhouettes under some simplifying assumptions; it does not
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deal with occluded rims or objects with non-zero genus. An
embedding of the rim mesh on the surface partitions it into
patches where every patch is purely inside the visual hull
but touches it along its boundary (along different rim seg-
ments). This patch separates the object’s interior from a set
of intersection curves, which lie outside the object in gen-
eral. This property will be useful in our method.

2.2. The maximum flow problem
Many global minimization and combinatorial optimization
problems have been solved by formulating them as graph-
cut problems on network flows [18]. Given a flow network�����������

[18] with a source � and a sink � , a graph cut parti-
tions

�
into � and  such that �"!#� and �$!% . the maximum

flow problem computes a flow with the maximum value.
The max-flow min-cut theorem [18] shows that comput-
ing the maximum flow is equivalent to finding the mininum
cost cut between � and � (the s-t min-cut). While s-t cuts
can be computed efficiently, the more general multiway-cut
problem (partitioning graphs into 3 or more subsets) is NP-
Hard. In computer vision, [7, 6] have used graph-cuts on
geometric graphs while [8] has solved stereo, segmenta-
tion, multi-view reconstruction using energy minimization
formulations via graph-cuts.

3. Our Graph Cut Formulation
3.1. A &(' Overview
Consider a ) � visual hull in flatland seen from two * �
cameras. Let + = ,.- , ,0/ , 121314,65 be the visual hull polygon as
shown in Figure 3(a). Different curves can give rise to + ,
however they must all touch every edge of + at least once.
These contour points 7 - ,7 / 1312187 5 are the ) � apparent con-
tours. If we knew their exact positions, we could partition
the unknown curve into independent segments with fixed
end-points. Without this information, we still know that,7:9<;(= must lie somewhere on its respective edge (see Fig-
ure 3(a)). Now let us lift the ) � plane into a series of planes
such that each individual segment bounded by two succes-
sive contour points lies in its own plane. See the illustration
in Figure 3(b). The planes corresponding to every pair of
adjacent curve segments are attached by vertical sheets such
that the respective segments incident at a contour point on
these different planes are connected through a vertical edge.

We have taken a * � closed manifold in ) � and embed-
ded it in

���
by exploiting the silhouette constraints. Any

curve that produces the visual hull + can be represented
in this form. This representation allows us to map the true
curve (or surface) to an s-t cut on a geometric graph. The
graph construction for the ) � case is now described.

Consider the > -connected ) � grid graph
��?@�A�B�C���

where
�

is the set of ) � voxels inside + and the points
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Figure 3: (a) ) � Visual Hull Polygon +EDF, - � , / � 13131 � , 5
from 2 views with 7 - � 7 / � 13131 � 7 5 the apparent contours. (b)
Embedding the * � manifold in

���
(shown in bold). The

vertical edges are shown (sparsely for clarity). (c) Two suc-
cessive levels in the graph showing the connections to the
source and the sink. (For clarity the grid is not drawn).

obtained by intersecting this grid with + . The set
�

con-
tains all the edges connecting vertices in

�
on the underly-

ing grid. While lifting + to multiple planes we make copies
of
�G?

and assign a copy
�H?9 to each level = (imagine planes

indexed by height). For every edge I of + , where segments =
and J are incident, a vertical sheet is created connecting

��?9
to
�G?K through surface vertices (representing surface points)

on this edge I . Vertices for these surface points are intercon-
nected by surface edges. Consider the graph LNM9 �G?9 along
with all the vertical edges and surface vertices.In the even
levels, the outside vertex ,�9 is connected to the source while
the boundary edges excluding the two edges incident on ,.9
are connected to the sink. The source and sinks are reversed
on the odd levels. The continuous curve will always map
to a s-t cut (Figure 3(c)) if and only if the number of levels
can be shown to be even. Visual hulls in ) � in the generic
sense, always have an even number of edges, (since every
camera contributes two half-planes and hence two distinct
line-segments to the visual hull).

This graph could grow quickly in size (especially in
���

)
and could be considerably reduced when

�N?9 in level = is
limited to a potentially visibile region in the respective lev-
els (see Section 3.4), assuming that the curve/surface can-
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not lie beyond the visibility boundary in this level. If it did,
photo-consistency could never recover it anyway.

3.2. The O%' algorithm
The

���
version is similar to the ) � case. The reconstruc-

tion surface is now a 2-manifold which must be lifted from���
and embedded in a > � geometric graph. + is the visual

hull polyhedra and
� ? the associated P -connected

���
grid

graph consisting of voxels and surface points on + . The true
surface touches faces of the visual hull mesh along rim seg-
ments (the edges of the rim mesh). Thus rims partition the
actual surface into patches, each inside the visual hull but
with boundaries, each forced to touch the visual hull along
particular visual cone patches.

Each level
�H?Q

is built from a rim mesh face R (This
was also true in the ) � case, where the rim mesh was iso-
morphic to the ) � visual hull’s dual graph). In ) � , the
subgraph

�H?9 for level = was always connected to two sub-
graphs, each corresponding to vertex ,�9 ’s neighbouring ver-
tices in + . In

���
, the lateral connections for

��?Q
are es-

tablished based on which faces are adjacent to R in the rim
mesh. Thus if R and S are adjacent faces in the rim mesh,
the sub-graphs

�H?Q
and

�G?T have lateral edges through the
visual cone patch they share. Surface vertices on this cone
patch are also interconnected by surface edges. The follow-
ing result makes the max flow formulation possible in

���
.

Lemma 3.1 A surface map UWV , induced by the rim mesh
from k views can be 2-colored.

Proof We prove this by induction: A rim divides the sur-
face into ) parts: front and back. Let us color them differ-
ently. Thus, UX- can be 2-colored. Assuming U V can be
2-colored, we must prove that U VZY - can also be 2-colored.
After adding the

��[]\ * �4^`_ rim to U V , swap colors of its
front faces in the new map, UWVZY - , but leave the back faces
untouched. This will always 2-color the newly created faces
in UaVZY - , consistently with the old faces, unchanged fromUaV . Thus UWVZY - can be 2-colored.

Figure 4: 2-Coloring the Rim Mesh. (Left) Map induced by
k-rims. (Right) Adding rim (k+1)

2-Coloring the rim mesh faces is equivalent to labeling the
subgraphs

�H?9 red and blue. For each red subgraph we set
the source to be a subset of intersection curves belonging to

Figure 5: An orthographic view of the subgraph for a sin-
gle level. The graph show interior vertices, interior edges,
surface vertices, surface edges and interior to surface edges.
Rotated

���
views are shown in the inset circles.

this patch. The visibility computation (Section 3.4) finds a
visibility boundary in this level which can be made the sink.
For blue subgraphs, the sources and sinks are swapped.

3.3. Graph Construction ( O%' case)
We first describe how to build sub-graphs

��?Q �A��?Q �C�H?Q �
for

each rim mesh face R . We then construct lateral edges and
surface vertices to interconnect them. Vertices denote 3D
points, sampled either inside the visual hull + on a regu-
lar grid U with unit resolution S or on the cone patches
of + .

� =4� � R � denotes the visibility region for face R ;� =4� � R �cb U . The sets
� ?Q

and
� ?Q

are as follows :

� ?Q Ded �`fg��h(�Ci$� R �8j �kf<�lh%��im� ! � =4� � R � (1)� ?Q Dnd �kop� , �8jqo<� ,r! � ?QEs � ?Q �c�`o<� , � !BUe1 (2)

�G?Q
is sub-isomorphic to the grid graph of U . We denote

the surface vertex set by
�utv ; the set of surface edges by

�Ntv
and the set of surface to interior edges by

� 9v for patch 7 .��tv is defined as :
�Ntv Dnd �`f:wA�lhxw���i.wy�8j where

�`f(w���hxw`�Ci�wz�
is

a surface point on cone patch 7 that cuts the grid lines of U .
The set

� 9v is defined as :
� 9v D{d �kop� , �8jro ! �H?Q � ,u! ��tv

and R shares 7 with another rim mesh face. These edges
join internal voxels to surface points along the grid lines.��tv is defined as:

��tv D{d �`o<� , �Zj|o<� ,u! �Htv , and }�=4�2� �kop� , �~�� � � ��� S . These edges join proximal surface points on 7 .
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The interior vertices at the visibility boundary will con-
nect to the Sink/Src vertices (Fig. 5). Let  Q be the set of
those edges. � Q is the set of all edges connecting to the
Src/Sink. Points on R ’s intersection curve form the vertex
set � Q . Vertices in � Q are connected to the closest inte-
rior grid vertices. Vertices in � Q are also connected to the
Src/Sink by edges which make up the set � Q .

Finally, we can now define
���A�B�C���

as follows :� D��� Q �%� ?Q�� � Q � � � � � v �
tv � � d�� � � j (3)

� D � � � Q � ?Q � � � � � v �(� 9v
� � tv �p� � � Q �  Q (4)

Interior vertices, interior edges, interior to surface edges
have multiple copies in different subgraphs, if they are in
the visibility regions for different rim mesh faces. Surfaces
vertices and edges have single copies in

�
. The assignment

of edge capacities in
�

is now described; � �`o<� , � is a mea-
sure proportional to the photo-consistency at the mid-point
of vertices

o
and , . Due to different visibility computations,

the
���

point corresponding to the edge
�kop� , � will have dif-

ferent photo-consistency measures in different visibility re-
gions, each of which corresponds to a subgraph

�N?Q
. � is a

smoothness term explained in Sec. 3.5 and �����Z� is a large
constant.

� �kop� , � D��$1 � �r� � �ko��g\ � � , �l�<\ � �kop� , � ! � ?Q (5)� �kop� , � D����x� �kop� , � !�� Q����  Q (6)� �kop� , � D�� ���Z� �`o<� , � ! � 9v (7)� �`o<� , � D�� �kop� , � ! � tv (8)

An interior edge’s capacity � �kop� , � reflects the consistency
of the mid-point of voxels

o
and , . The surface edges have

a constant capacity � ; increasing it reduces the overall cur-
vature of the reconstructed rims on the surface. The high
capacity on the surface to interior edges prevents the cut-
surface from staying on the cone patch view edge if interior
voxels are present. A higher value of �����Z� would be suit-
able for smooth surfaces. When Vis(f) is empty, the cut is
forced to go through these surface to interior edges resulting
in a fully connected watertight cut-surface. Note that, the
cut-surface could transition from one subgraph to another
multiple times through the same cone patch. This would
happen when the true surface is bitangent to the visual hull.

3.4. Computing Visibility
For every rim mesh face, we find a region inside the visual
hull, denoted by

� =4� � R � , visible from at least
[

cameras.
The apparent contours 7�- and 7(/ on the visual cone patches |¡

and
¡ � (see Fig. 6(a)) cannot be any further than

 
and� respectively. We treat the set of patches

 |¡
and

¡ � as a
hole in the visual hull, determine its at least k-visible region

Figure 6: (a) Surface patch touching visual cone patches |¡
and

  � at 7 - and 7 / . (b) The
[c¢ �

visibility region.
(c) The same region with the Photo-Consistency costs.

(Fig. 6(b)). Grazing views are avoided using a heuristic and
robust cost based on photo-consistency (Fig. 6(c)) is com-
puted at every vertex in Vis(f). If

� =4� � R � is empty due to
insufficient views, the graph cut would lie along the visual
hull cone patches at this face.

With £ views, the rim mesh has ¤ � £ / � faces. Without
visibility regions, the vertex set

�
in the graph

���A�B�C���
is¤ � £ /m¥ � ¥ � where ¥ � ¥ is the voxel count. Visibility shrinks
�

and makes it ¤ � £ ¥ � ¥ � . This property makes our algorithm
feasible for reconstruction in a fine volumetric grid. For a
voxel , at level ¦ , a vertex is present in the graph only if at
least

[
cameras see it through the hole (set of visual cone

patches) associated with this rim mesh face. A cone patch
is shared between only two rim mesh faces. Since there
are atmost £<§ [ distinct groups of

[
camera sets, , can have

atmost ¨ � ¥ � ¥ § [ copies in different levels where ¨ is the
average number of cones patches in a rim mesh face ( ©ª£ ,¨ =

�
in ) � ).

3.5. Energy Minimization Framework
The color variance of a voxel projected in different views [9,
16], is used as a photo-consistency measure in energy func-
tionals [7, 8, 6]. It is sensitive to outliers and improper sam-
pling of voxels [12]. We need a robust measure as self-
occlusions will produce outliers. We use a robust variance
by picking the color variance of the most consistent « � V ��[.¬
views within the

[
available views (

� V is the inlier percent-
age). We assume lambertian surfaces, but a non-lambertian
photo consistency [17] could also be incorporated.

The minimum cut surface we recover is represented as
an implicit surface � containing regular grid points (mid-
point of cut edges) and surface points (constituting the re-
constructed rims) that minimizes the following discrete en-
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Figure 7: (a) Cone Strip Intersection for smooth silhouettes
produce frontier points. (b,c,d) Frontier Elements are gen-
eralization of frontier points for discrete representations. (e)
Cone Strips under perfect conditions. (f) Broken cone-strip
segments. (g) Repaired Cone-strip.

ergy functional
�]� � � .�� � � De® ¯±°A²³� � , �g\ � (9)

where , denotes a point in � , � � , � is its photo-consistency
whereas � is a smoothness parameter weighting the smooth-
ness against the photo-consistency. Our smoothness term is
spatially constant and corresponds to minimizing the Man-
hattan area (equivalent of Manhattan distance in ) � ) of the
cut-surface. The total smoothness cost is � � ¥ � ² ¥ where � ²
is the set of cut edges. Our maximum flow algorithm com-
putes the global minimum of this energy function

�]� � � . In
our formulation, the energy functional does not have any
silhouette terms.

3.6. Robust Computation of Rim Mesh
The image-based rim mesh algorithm [1] works only for
smooth silhouettes and perfect data (good segmentation,
calibration). Discretization or calibration noise makes the
rim mesh unstable, since it causes missing frontier points,
due to the problem of lost tangency [3] or perturbs their
consistent ordering.

Under the same assumptions as [1] (see 2.1) but relax-
ing the requirement for smooth perfect data, we robustly
computing a consistent rim mesh where frontier points (Fig-
ure 7(a) are replaced by generalised frontier elements which
could be edges or facets as shown in Figure 7(b,c,d) for 2-
views) or a contiguous sequence of edges for 3 or more
views. Exact polyhedral visual hulls as computed by [3]
contain all the facets constituting the broken rim segments
as shown in Figure 7(f). These segments can be recovered
from the exact visual hull polyhedra [3] by checking facets
for co-planarity with the camera center and then ordering
them on the apparent contour. These cone-strip segment

pieces are then ordered along the apparent contour. The bro-
ken cone-strips can be repaired (see Figure 7(g)) by finding
the unique sequence of edges in the visual hull polyhedra,
that project onto the apparent contour and lie between the
end points of the image of the two cone-strip segments to
be connected. We will call these the rim edges. The rim
edges are important since they must belong to both the vi-
sual hull and the actual surface.

Frontier elements can now be recovered by computing
intersection between a pair of repaired cone-strips (circular
list of rim edges and cone strip segments ordered on the ap-
parent contour). Frontier elements are either (1) a view edge
(2) a set of consecutive rim edges or (3) the end points of
cone strips. Its image on the apparent contour could over-
lap with other frontier elements. A consistent ordering is
enforced by using the epipolar tangency constraint in the
images (see 2.1). We now compute the rim mesh as de-
scribed in [1].

4. Experimental Results
We solve the maximum flow problem using an algorithm
shown to work efficiently on grid graphs [8]. We currently
compute the visibility regions using segment-triangle inter-
section tests but this could be immensely accelerated by
graphics hardware based volume rasterization techniques
and hierarchical computations. We demonstrate results on
two synthetic sequences: Pear and Sphere and a real Head
sequence. The synthetic datasets used �x*�) s �x*´) pixel im-
ages while the real dataset had �0�.) s¶µ P�� pixel images.

Pear Sequence : The top two rows of Figure 8 show re-
sults for this sequence. Figure 8(a,c) shows the visual hull
computed from > views and the corresponding rim mesh
containing 10 frontier points is shown in Figure 8(e). *�)
color images were used with minimum visibility

[
set to �

views. The reconstruction was done on a *´��� s * � � s * � �
grid; the resulting graph had ��1 > million vertices and *�1�*
million edges and the reconstructed surface had > ��· points.
The reconstruction took about P minutes but max-flow used
only *2�¹¸e*´) seconds. The bulk of the time was spent in
computing the photo-consistent in the different visibility re-
gions and the graph cut itself is much faster. Figure 8(b,d)
shows the 2-coloring of the reconstructed surface separated
from each other by the reconstructed rims (in white). Fig-
ure 8(f) shows the reconstructed surface with texture while
Figure 8(g,h) show the ground truth and reconstructed mesh
model respectively.

Sphere Sequence : The third row of Figure 8 show re-
sults for this sequence. The visual hull was built from P
silhouettes while *�) color images were used with

[ Dº>
for computing photo-consistency. The grid dimension was*2��� s *2��� s *´��� ; the resulting graph had �$1 >�> million ver-
tices and *�1 � million edges and the reconstructed surface
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had >�� · points. Two different reconstructions are shown
in Figure 8(b,c) with a higher value of � in (b) followed by
a lower value of in (c). The recovered rim curve in white
has a higher curvature for a lower value of smoothness cost� . The reconstructed triangulated sphere model is shown in
Figure 8(d).

Head Sequence : The two bottom rows of Figure 8 shows
results for the real dataset containing 36 images from a
turntable sequence, 4 of which are shown in Figure 8(a).»

images were used to build the visual hull (see Figure 8(b).
The corresponding rim mesh (see Figure 8(c)) has �0P fron-
tier elements and � » faces. Many of the faces are clus-
tered at the top and bottom of the head model and con-
tribute very small or degenerate patches to the final model.[

set to *2� views with the inlier fraction,
� VcD¼��1 » in or-

der to deal with self-occlusions while computing photo-
consistency from all the images. The reconstruction was
done on a *�)0� s *2P�� s * µ � grid; the resulting graph had*�1 > µ million vertices and >$1½� million edges and the recon-
structed surface had *2� »�· points. The reconstruction took
about

µ � minutes with max-flow using only about
� ��¸X���

seconds this time. The reconstructed model recovers sur-
face detail and is rendered from different views alongwith
texture in Figure 8(d-h). The recovered rim curves are col-
ored white on the reconstructed surface.

5. Conclusions and Future Work
We presented a multi-view surface reconstruction approach
that uses color consistency and silhouettes to reconstruct a
closed surface by exactly satisfying silhouette constraints
and minimizing an energy functional based on photo-
consistency and smoothness. We transformed the recon-
struction problem into solving max-flow / min-cut on a ge-
ometric graph derived from the rim mesh of the object.
This framework which enforces silhouette constraints ex-
actly and excludes it from the energy minimization is the
main contribution of this paper. We have demonstrated our
approach on real and synthetic data. Future work will con-
sist of improving the efficiency and robustness of the pho-
toconsistency measure as well as developing better shape
priors. Work is also needed on robust computation of the
rim mesh for more complex surfaces so that our work can
be extended to objects with arbitrary topology.
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Figure 8: Results: (Top 2 rows) Pear Sequence: 4 Silhouettes and 12 Color Images: (a) Visual Hull from viewpoint 1 (b)
The 2-colored reconstructed surface (Rim curves are in white). (c & d) Visual Hull and Final reconstruction from another
viewpoint. (e) The Rim Mesh with 10 frontier element and 12 faces. (f) The reconstructed surface with texture. (g,h) Ground
Truth and Reconstructed Mesh respectively. (Middle row) : Sphere Sequence: 6 silhouettes and 12 color images: (a) Visual
Hull (b) Reconstruction with higher smoothness cost. (c) Reconstruction with lower smoothness cost (notice that the rims
curves on the surface have higher curvature (d) Reconstructed Mesh. (Bottom 2 rows) Head Sequence: 8 silhouettes and 36
color images: (a) 4 of the input images (b) Visual Hull from 8 views (c) Rim mesh with 56 frontier elements and 58 faces.
(d) Reconstructed point cloud (points rendered as spheres). (e-h) Views of Reconstructed point cloud with texture.
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