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Abstract

We formulate multi-view 3D shape reconstruction as the
computation of a minimum cut on the dual graph of a semi-
regular, multi-resolution, tetrahedral mesh. Our method
does not assume that the surface lies within a finite band
around the visual hull or any other base surface. Instead,
it uses photo-consistency to guide the adaptive subdivision
of a coarse mesh of the bounding volume. This generates a
multi-resolution volumetric mesh that is densely tesselated
in the parts likely to contain the unknown surface. The
graph-cut on the dual graph of this tetrahedral mesh pro-
duces a minimum cut corresponding to a triangulated sur-
face that minimizes a global surface cost functional. Our
method makes no assumptions about topology and can re-
cover deep concavities when enough cameras observe them.
Our formulation also allows silhouette constraints to be
enforced during the graph-cut step to counter its inherent
bias for producing minimal surfaces. Local shape refine-
ment via surface deformation is used to recover details in
the reconstructed surface. Reconstructions of the Multi-
View Stereo Evaluation benchmark datasets and other real
datasets show the effectiveness of our method.

1. Introduction

We address multi-view reconstruction from a set of
calibrated images utilizing both photometric and sil-
houette information. Several high-quality reconstruc-
tion approaches have been recently proposed [14] and
have participated in the Multi-View Stereo Evaluation
(http://vision.middlebury.edu/mview). Multi-view recon-
struction has been formulated as a variational problem and
techniques such as level sets and graph cuts have been used
to recover a surface that minimizes a surface cost functional
regularized using smoothness priors. The main issues that
are investigated by methods such as [3, 4, 15] are (1) how to
enforce photo-consistency and silhouette constraints, which
are complementary and (2) how to estimate visibility. We
propose a novel way to address the first question and em-
ploy a robust technique for computing photo-consistency
that does not require accurate visibility estimation.

Figure 1. Overview (statue1 dataset)(a) One of 36 input images.
(b) A slice through the adaptive tetrahedral mesh showing the
photo-consistent region in red (dark). (c) Quasi-dense patches pro-
duced during mesh refinement. (d) The 3D model obtained from
graph-cut optimization. (e) The final refined 3D model.

Problems whose solution is a manifold of co-dimension
one, such as surface extraction in a volume, can be solved
using graph cuts. A formulation often used for 3D recon-
struction is to embed a graph in a volume containing the
surface and estimate the surface as a cut separating free-
space (exterior) from the interior of the object or objects.
Vogiatzis et al. [17] were the first to present a graph con-
struction technique for this problem. Their method and
those of [3, 6, 16, 19] rely on the silhouettes for determin-
ing an exterior and an interior bound for the surface. Photo-
consistency is then estimated for the nodes of the geometric
graph embedded between the two base surfaces.

While these methods have shown impressive results, the
base surfaces impose hard constraints on the topology of
the reconstructed objects. Deep concavities, holes and sep-
arations not present in the silhouettes cannot be recov-
ered. To circumvent these limitations, we propose a novel
method for constructing the graph that is guided by photo-
consistency. We adaptively subdivide a coarse tetrahedral
mesh to densely sample the photo-consistent parts of the
volume. The adaptive subdivision is crucial for achieving
high-quality reconstructions since the memory and com-
putation requirements for operating on a uniform 3D grid
become prohibitive as the resolution increases. Hornung
and Kobbelt’s multi-resolution method [6] achieves high-
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resolution in the region of interest, but it relies heavily on
the visual hull being a good approximation of the surface.
Since our approach does not require a base surface, it can
reconstruct deep concavities and shapes whose visual hulls
have a different topology.

An important aspect of multi-view reconstruction is vis-
ibility estimation. Lempitsky et al. [9] argue that a local es-
timation based on surface orientation may suffice instead of
attempting to estimate long-range occlusions as the shape
estimate used for this can contain errors. Conceding that
neither local or global methods are able to estimate visibil-
ity reliably, we use a robust matching cost in multiple views
that ignores least photo-consistent pairs of image patches,
treating occlusion as the source of outliers. Regions that are
not photo-consistent are labeled as either interior, exterior
or undecided using a voting-based scheme.

After an initial surface is estimated as the minimum cut
of the dual graph embedded in this semi-regular tetrahedral
mesh, we impose silhouette constraints and obtain the fi-
nal surface by a second minimum cut on the same graph.
These silhouette constraints help to overcome the bias for
minimal surfaces which are preferred by graph-cuts. Local
shape refinement is then performed along the lines of [3, 4]
to capture fine details on the surface.

1.1. Related work

Multi-view shape reconstruction has been approached
from various angles by the computer vision community. We
refer readers to the recent survey by Seitz et al. [14] and
only review methods closely related to ours here.

Lhuillier and Quan [10] detect a quasi-dense set of reli-
able 3D points and reconstruct the surface within a varia-
tional framework. The solution is computed by a level set
implementation that takes into account 3D points, silhou-
ettes and the images. Pons et al. [12] adopt a level set ap-
proach that evolves the shape in order to minimize image
prediction error. A multi-resolution scheme is used to es-
cape local minima. Two approaches based on local graph-
cut optimization of surface patches combined with space
carving and patch growing are presented by Zeng et al. [20].

The first approach based on graph cuts was presented
by Kolmogorov and Zabih [8] who use a labeling graph
that also encodes visibility constraints. A volumetric graph-
cut stereo approach was presented by Vogiatzis et al. [17]
who use the visual hull and an inwards offset surface as the
source and sink of a graph. The desired surface is the cut
that separates the two terminal while maximizing surface
photo-consistency. Yu et al. [19] proposed a similar method
that operates on the surface distance grid to reduce the min-
imal surface bias and metrication errors. To counter the bias
for minimal surfaces a ballooning term favoring larger vol-
ume was proposed by [17]. A better visibility based ’intel-
ligent’ ballooning term was recently proposed by [5].

Graph cuts on CW-complexes (duals of meshes) were
first used by [7] for optimizing surface functionals. Later
globally optimal methods for volumetric stereo were pro-
posed [2, 9]; these did not require initialization via the vi-
sual hull. However these methods used a uniform CW-
complex which had a prohibitive memory cost limiting
them to complexes with coarser resolutions. The CW-
complex reduces metrication errors by providing more ori-
entations than those in a voxel grid and a graph-cut on
it yields a manifold mesh. Hornung and Kobbelt [6]
proposed a multi-resolution approach based on complexes
(dual graph embedding of a uniform grid) to address the res-
olution issue but their method relied on a good visual hull
for initialization. In contrast our globally optimal method
for volumetric stereo via graph-cuts neither uses the visual
hull for initialization nor is limited by the high memory
costs because it operates on an adaptive CW-complex.

Many of the above methods use silhouettes only for ini-
tialization. They do not enforce silhouette constraints dur-
ing the main optimization. Hernández and Schmitt [4] com-
bine silhouette and photo-consistency constraints that act
as forces on a deformable model representation of the sur-
face. To overcome sensitivity to local minima, gradient vec-
tor flow for the texture-driven force is computed in an oc-
tree. Tran and Davis [16] initialize their graph using two
base surfaces, with the visual hull being the exterior one.
They show ways to modify the graph to enforce the in-
clusion of protrusions and, after a first cut is computed,
to pursue concavities. Sinha and Pollefeys [15] introduce
a novel geometric graph construction that guarantees ex-
act enforcement of silhouette constraints in a single step
but cannot handle complex geometry and topology. Fu-
rukawa and Ponce [3] first constrain the rims using dynamic
programming followed by iterative graph cut with the rims
fixed. Fine geometric details are recovered in a final refine-
ment stage where texture, silhouette-driven and smoothness
forces deform the mesh representing the surface as in [4, 5].

Visibility estimation is a critical aspect in multi-view
stereo. Several authors [3, 12] use the current estimate of
the shape to compute the exact visibility of all points. A
simpler approach is to use the initial shape, typically the vi-
sual hull, and a restriction on the angle between the optical
axes of the cameras and the surface normal for this purpose
[17, 6, 19]. Only the latter factor was taken into account by
[9]. We opt for a robust approach under which we select the
best subset of cameras for each point as in [4].

2. Key Concepts

A major strength of our method is that it does not rely
on the visual hull to construct a base surface. As a result,
it is able to handle changes in topology, unlike most global
methods reviewed above with the exception of [9]. A sec-
ond advantage is that unlike previous CW-complex based



methods, the resolution of our volumetric mesh adapts ac-
cording to photo-consistency and is finer at places where
surfaces are more likely to exist. For textured surfaces, this
provides huge memory savings as photo-consistency bands
in the volume are fairly thin. Textureless surfaces how-
ever tend to create larger zones of photo-consistency; such
regions must be finely sampled in our mesh. High reso-
lution is critical for the quality of the reconstruction and
our method aims at maximizing sampling density where
needed. Along the lines of [6, 9] the presence of 12 differ-
ent oriented faces in the mesh (as opposed to 6 in a uniform
grid) reduces the discretization of the cut surface.

We employ a robust scheme for photo-consistency esti-
mation that selects the most photo-consistent camera pairs
to compute the score of a patch. Visibility does not need to
be known, since potentially occluded cameras would not be
included in the most photo-consistent pairs. We also present
a method similar to [5] for determining the likelihood of a
cell in the mesh being interior or exterior to the surface uti-
lizing the known visibility of a few surface patches which
have been found to be photo-consistent.

2.1. Graph-cut on dual of a volumetric mesh

Figure 2. 2D illustration of the graph-cut formulation on the dual
graph G of a volumetric mesh M (Cin and Cout are interior and
exterior cells respectively). The value of a cut on G is equal to the
cost of a surface S embedded within M .

Let us assume that we are given a volumetric mesh M of
the bounding volume with its set of cells and faces denoted
by C and F respectively and that some of its cells have been
labeled as interior and exterior to the unknown surface. The
surface reconstruction problem can then be formulated as
finding the most photo-consistent surface embedded within
M , which separates the set of interior cells Cin from the
exterior ones denoted by Cout. This can be achieved by
minimizing a surface cost functional

∫
S

φ(s) ds, where φ(s)
represents the image discrepancy of an infinitesimal area ds
of the unknown surface. In the discrete case, the energy
functional becomes

∑
S φ(s) where S is a set of polygonal

faces constituting a candidate surface. The discrete opti-

Figure 3. (a) Tetrahedral cell in a BCC lattice (two interlaced grids
with diagonal edges added). (b) (Top-left) Red-Refinement (1:8)
subdivision. (Rest) Green Refinement (1:2, 1:4) subdivision).

mization can be formulated as a binary graph-cut problem
[1, 9] on the dual graph of M denoted by G(V, E). See
Fig. 2 for a 2D illustration. The vertices in V are dual to
the cells of M while the directed edges in E are dual to the
oriented cell boundaries (faces) of M . The capacity of an
edge in E can be derived from the photo-consistency cost
of its dual polygonal face. The vertices in V representing
cells in Cin and Cout are connected to the source and sink
vertices in the flow graph using edges with infinite capaci-
ties. The minimum cut on G can be computed in low-order
polynomial time and corresponds to a surface which gives a
global minimum of the surface cost functional.

We choose M to be a tetrahedral mesh, motivated by
their popularity in mesh-generation [11] and the fact that
a minimum cut on its dual graph produces a triangulated
surface. The rest of the paper describes (a) how to build a
suitable tetrahedral mesh M and (b) how to use this new
graph-cut formulation for inferring visibility and enforcing
silhouette constraints in the 3D reconstruction problem.

2.2. Photo-consistency driven mesh refinement

Previous graph-cut based reconstruction methods [9, 17]
first densely sample voxels on uniform grids to build a
graph embedding and then evaluate photo-consistency at
all these voxels. This step is more expensive than solving
the graph-cut. Here we show how to adaptively sample the
volume and avoid evaluating the cost functional in regions
which are unlikely to contain the unknown surface. This is
achieved by applying a recursive subdivision scheme on a
coarse, regular, tetrahedral mesh representing the bounding
volume, and adaptively refining the most photo-consistent
regions until the desired level of tessellation is reached.

Our base mesh denoted by M0 is a body-centered cu-
bic (BCC) lattice which comprises the nodes of a 3D grid
along with the centers of all the cubic cells (see Fig. 3(a)).
It can be thought of as two interlaced cubic lattices. Edges
are added between every node in the first grid and its eight
diagonal neighbors in the second grid. We choose a simple



red-green mesh refinement strategy [11] to obtain a semi-
regular mesh from M0. The mesh obtained after i subdi-
vision steps will be denoted by Mi and its tetrahedral cells
and triangular faces by Ci and Fi respectively. A subset of
cells in Ci which lie in the photo-consistent region, referred
to as the active region will be denoted by Ai. The refined
mesh Mi+1 is obtained by applying red-refinement to the
cells in Ai and green-refinement to the cells in Ci − Ai. A
tetrahedron is red-refined into eight tetrahedra as shown in
Fig. 3(b) by bisecting its six edges. The shortest of the three
possible diagonal edges internal to the tetrahedron must be
chosen to make the eight new tetrahedra geometrically sim-
ilar to the original cell. Green tetrahedra which share faces
with red tetrahedra require between one to five edge-splits.
Similar to [11], we reduce the various cases of green refine-
ment to the three shown in Fig. 3(b). Green tetrahedra are
not geometrically similar to the original BCC tetrahedra and
are never subdivided any further.

A photo-consistency measure g(X) : R3 → R which
computes the likelihood of the 3D point X of being a true
surface point is used to find the active set Ai+1 ⊂ Ci+1,
excluding cells created by green refinement. When the un-
known surface passes through a tetrahedral cell, some of
its four faces must contain points with a high measure of
photo-consistency. We refer to these as crossing faces. If
none of the faces of a cell contain any photo-consistent
points, that cell cannot contain a piece of the surface. We do
not refine such cells any further and avoid sampling in their
interior. Assuming that the unknown object is large enough
not to be completely contained inside a single tetrahedron,
a cell must have at least one crossing face in order to be la-
beled active. To determine Ai+1, we evaluate g(X) on the
faces of cells created by red-refinement of Ai and determine
the subset of crossing faces. Then each crossing face labels
its two neighboring tetrahedral cells as active.

Figure 4. (a) Testing if face ABC with face normal nf is a
crossing face; Test patch at P with unit normal nX for photo-
consistency. (b) Computation performed on a triangular lattice
(photo-consistent points are blue (dark)) with the results stored
in a quad-tree associated with face ABC. Nodes corresponding to
crossing faces are black in the quad-tree.

2.3. Computing Photo-Consistency

To determine whether a face f is a crossing face, we
sample a triangular lattice on it as shown in Fig. 4. The
spacing between samples in the lattice is selected to prevent
aliasing by ensuring that no pixels are skipped when the lat-
tice is projected onto the images. At each lattice position X ,
we use the normalized cross correlation (NCC) of the image
projections of patches placed at X to measure its likelihood
of being on the surface. Since the mesh is initially coarse,
its faces may not be parallel to true surfaces. In this case, it
would be undesirable to compute NCC on the faces them-
selves. To overcome this, we place multiple patches with
different orientations at each point X . The patches and the
set of images used for the computation are determined as
follows.

At X , we place patches at multiple orientations, each
denoted by unit vector nX . For all points, nX is chosen
from 14 canonical orientations sampled along the corners
and faces of a unit cube. For a given orientation nX , we
choose the best k cameras such that the angle between nX

and the direction vector from X towards the camera is at
most 60◦. Let us denote this subset of cameras by P (X).
If X is a true surface point and nX is a fair approximation
of the surface normal on the unknown surface, then the pro-
jection of that patch should have a high matching score for
the subset of visible cameras ⊂ P (X). Since we are only
interested in determining whether a point could potentially
belong on a surface or not, we use a simple computation for
the photo-consistency to reduce computational complexity.
We simply place a 1D 1× µ grid along the intersection line
of the patch and the underlying face f (see Fig. 4). This di-
rection is given by nX × nf , where nf is the normal of the
face. This 1D grid is now projected into each of the cam-
eras in P (X) and pairwise NCC scores are computed for
all such pairs. The photo-consistency score for each camera
in P (X) is computed by averaging the best k′ NCC scores
with the other (k-1) cameras (k′ = max{k/2, 3}) allowing
for matching to succeed despite some occlusion. The score
of the best overall camera is retained as the score for the
patch at X with orientation nX . Points with score larger
than a global threshold T are labeled photo-consistent. Fi-
nally, if a face contains at least 20% photo-consistent points,
or at least 20 points if 20% corresponds to a number below
20, we declare it to be a crossing face.

This computation could be repeated for every face at
every subdivision level during mesh refinement. However
this would be highly redundant since during each subdivi-
sion level, a large face f splits into four new faces f1, f2,
f3 and f4 whose photoconsistency measures were already
computed to decide whether f was a crossing face. The
solution then is to perform the computation recursively for
face f only once and store the results in a quad-tree asso-
ciated with f (see Fig. 4(b)). Concretely, the root node of



the quad-tree corresponds to f while the four children cor-
respond to the faces { fi | 1 ≤ i ≤ 4} obtained by bisect-
ing the three edges of f and connecting the mid-points. At
each tree node we store: (1) the number of photo-consistent
samples (those with matching score > T ) on the triangle
lattice, (2) the total sample-count and (3) the best oriented
point for f along-with the set of cameras it correlated on.
All such oriented points form a quasi-dense reconstruction
of the scene (see Fig. 1(c)) and is next used to detect interior
and exterior cells. When f is split during subdivision, the
four new faces inherit the children of f ’s quad tree and can
be immediately tested for being crossing faces.

2.4. Finding the Interior and Exterior

Multiple iterations of mesh refinement produces a set of
highly tesselated active cells. We will now try to include
some of the remaining cells in sets Cin and Cout. Since
the visual hull contains the true shape, any cell which falls
outside the visual hull can be labeled as exterior. However,
green tetrahedra contained within the visual hull could be
either interior or exterior (eg. a deep concavity). The set
of quasi-dense oriented surface points recovered during the
photo-consistency driven mesh refinement (Section 2.3) al-
lows us to determine which green tetrahedra are part of the
true interior. An oriented point p that was photo-consistent
in k′ views must have been visible from each of those cam-
eras. Hence we path-trace rays from p to all of the camera
centers and vote for each cell that the ray intersects along
the way. This can be done efficiently by walking along the
ray within the tetrahedral mesh and performing ray-triangle
intersections. Finally amongst all the green tetrahedra con-
tained within the visual hull, the ones which received votes
lower than the 10th percentile are labeled interior, while the
ones with votes above the 75th percentile are labeled exte-
rior. Since labeling cells as interior and exterior imposes
hard constraints in the reconstruction, we apply the labels
conservatively and leave ambiguous cells undecided ie. we
re-label them active.

3. Proposed Approach

Our complete approach summarized later in Algorithm 1
begins with tetrahedral mesh generation described in Sec-
tion 2, followed by the first graph-cut on its dual. This is
followed by a second graph cut after interior and exterior
sets are augmented by enforcing silhouette constraints and
a final local refinement. These are described below.

3.1. Graph Construction

Having generated a tetrahedral mesh M and sets Cin and
Cout we then construct G, the dual graph of M . Vertices in
G dual to cells in Cin and Cout are connected to the source
and sink respectively for the graph-cut. Edge capacities in

G are derived from the dual oriented faces in M . Unlike in
Section 2.3 where 1D patches were used for speed, the goal
here is to minimize a true surface cost functional. To this
end, a 2D µ × µ grid, placed on each face f , is projected
into the images and their pair-wise NCC scores are com-
bined. We pick the best k cameras at an angle of at most
60◦ from the surface normal of f . Each of these is chosen
as a reference view (as in Sec. 2.3) and correlated with the
other k-1 views; the best k′ (k′ = max{k

2 , 3}) scores out
of these truncated to [0,1] are averaged. The best average
score is assigned as the final score ωf of f . Eq 1 shows how
ωf maps to the edge weight φ(f) where af is the area of
face f .

φ(f) =
(

1−exp
(−tan

(π

2
(ωf−1

))2
/σ2

))
.|af |+λ.|af |

(1)
As explained in [17], minimizing the surface functional∑
S φ(s) over surfaces S embedded in the volume is equiv-

alent to finding the minimal surface with respect to a Rie-
mannian metric [1] where higher values of σ and lower val-
ues of λ produce a more photo-consistent but less smooth
surface and vice-versa.

3.2. Enforcing Silhouette Constraints

Variational surface reconstruction approaches have a
bias for smaller shapes, as surfaces with a lower total cost
are preferred over a more accurate surface which has lower
cost per unit area but higher total cost. The energy can be
regularized by including a ballooning term [9, 17] which
acts as a prior for larger shapes. While this can recover pro-
trusions, it also pushes the concave parts outwards thereby
significantly reducing the accuracy of the final result. While
[5] proposes visibility-based intelligent ballooning to ad-
dress this issue, it only reduces the graph cut bias and pre-
serves concavities better but does not guarantee consistency
with the silhouettes. We address this in a different way
by enforcing hard constraints in the graph-cut derived from
both visibility as well as silhouettes constraints.

Figure. 5 shows Sr the re-projected silhouette overlaid
on the original silhouette S. The re-projection errors are
in pixels such as x1 which fall inside S but outside Sr and
x2 which fall inside Sr but outside S. Consider the rays
r1 and r2 backprojected from x1 and x2 and the cells they
intersect. The ray r2 should not meet surface because x2 is
outside the silhouette S, therefore all cells intersected by r2

can be safely labeled added to Cout. On the other hand, r1

must intersect the surface at least twice. Thus at least one
of the cells that r1 passes through must be an interior cell.
For such rays in every view, we intend to mark at least one
such cell as interior and add it to our interior set.

We adopt a two-step approach. First, by computing the
minimum cut on G as described above, we obtain (a) a tri-
angulated surface (b) a partition of all tetrahedral cells into



Figure 5. Top: the original silhouette S and re-projected silhou-
ette Sr (O is the camera center). x1 and x2 indicate re-projection
errors (see text for details). Bottom: for x1, we inspect photo-
consistency costs on front and back-faces for all triangles in M
which are intersected by the ray back-projected from x1.

C1
in (interior cells) and C1

out (exterior cells). The triangu-
lated surface is then re-projected into all the images and
the sets of erroneous pixels (such as x1 and x2) are deter-
mined. Pixels such as x2 add cells to the set Cout. Pix-
els such as x1 are processed to mark some additional cells
in M as interior; these are added to Ca

in, the augmented
set of interior cells. The candidate cell is chosen as fol-
lows. We first find the sequence of tetrahedral cells in M
that ray r1 cuts through and sort them by distance from
the reference camera. Cells in this sequence that fall out-
side the visual hull are excluded, leaving groups of con-
tiguous tetrahedral cells each of which we will refer to as a
segment. For each segment, we orient the triangles (faces
of the cells) consistently with respect to the ray. Let us
first consider the simpler case when r1 intersects the sur-
face twice (see Fig. 5). This ray must meet a triangle ff

whose front-face is photo-consistent before it meets a tri-
angle fb whose back-face is photo-consistent. A few tetra-
hedral cells within such a depth-interval can be chosen as
interior. More specifically, we look for the maxima of front-
face photo-consistency and find the next significant peak in
back-face photo-consistency (within 0.8 of the global max-
imum) for faces along r1 in the same segment to determine
a conservative depth interval for the interior. We then pick
the center-most cell in this depth interval and add it to Ca

in.
This step is highly redundant and we pick candidates (a hard
constraint) only when we are sure about a cell being interior.
We skip pixels with multiple segments per ray and let a more
favorable view enforce silhouette constraints there. In our
experiments processing only a few pixels was sufficient to
recover all the protrusions. It is better to enforce a minimal

number of additional hard constraints for silhouette consis-
tency since performing this step exhaustively increases the
likelihood of including incorrect constraints.

A second minimum-cut is now computed on the same
graph G but with the augmented interior set Ca

in as source
and augmented exterior set Ca

out as sink. This new triangu-
lated surface satisfies silhouette constraints upto a few pix-
els (the actual value depends on the cell resolution of M and
is typically in the range of 1-5 pixels in the images. An anal-
ogy can be drawn between our approach and the graph-cut
based Grab-cut [13] segmentation method, where iterative
graph-cut optimization is performed while the user inter-
actively provides additional hard constraints. In a similar
fashion, we use silhouettes for generating reliable hard con-
straints (automatically in our case) as described above and
perform a second graph-cut iteration to correct the short-
comings of the first one.

Input: images {I}, cameras {P}, bounding-box B
Output: polygonal mesh model H

M0 ← BuildBCCMesh(B);
Q = { };
for i← 0 to m-1 do

patches← ComputeMatchingCost(Fi);
Ai ← FindActiveCells(Mi, Fi);
Mi+1 ← MeshRefine(Mi);
Q← Q ∪ patches ;

end
Cin, Cout ← MarkInteriorExterior(Mm, Q) ;
G← SetupGraphCut(Mm, Cin, Cout) ;
[S1, C

1
in, C1

out]← FindMinCut(G) ;
foreach camera j in {P} do

Kj ← RenderSilhouettes(S1, Pj) ;
end
Ca

in = C1
in; Ca

out = Cout;
foreach camera j in {P} do

Ca
in, Ca

out ← EnforceSilhouettes(Ij , Kj) ;
end
G

′ ← SetupGraphCut(Mm, Ca
in, Cout) ;

S2 ← FindMinCut (G
′
) ;

H ← RefineShape (S2);

Algorithm 1: The Complete Algorithm.

3.3. Surface Refinement

Finally, local optimization is used to refine the shape
locally to remove discretization errors introduced by the
graph cut reconstruction. The triangulated minimum-cut
surface mesh is iteratively deformed and remeshed during
local refinement similar to [3, 4]. Vertices of the mesh are
displaced by a combination of smoothness, silhouette and
texture forces. The smoothness force is computed by the



Figure 6. [Top] statue3 dataset: Three of the input images. The
reconstructed surface from the graph-cut step is shown on the top
row while the final 3D model after refinement is displayed in the
middle row. [Below] skull dataset: Two views of the final model.

approach of [18] which prevents the surface from shrinking
while silhouette forces are computed as described in [3].
To compute the texture force, we use the normal vector at a
vertex to determine a set of k cameras and compute a photo-
consistency score (see Section 3.1) at multiple offsets from
the current vertex location along its surface normal. A red-
green 2D mesh subdivision scheme [11] is used to remesh
the model after bisecting edges which project to more than
2 pixels in the best reference view.

4. Results

We have reconstructed several real multi-view datasets
using our approach as shown in Figs. 1,6,7 and 8. Datasets
statue1, statue2 and statue3 contain 36 images (6 Mpixels)
each, captured using a turntable. The head dataset contains
21 640 × 480 images without good color calibration while
the skull dataset contains 24 2000× 2000 images.

We have participated in the Multi-View Stereo Evalua-
tion (the reconstructions are shown in 7(a)). This evaluation
provides metrics on the accuracy and completeness of the
reconstruction. The accuracy metric is the distance d such
that 90% of the reconstructed is within d from the ground
truth surface. Completeness is defined as the percentage of

the ground truth surface within 1.25mm of the model. The
accuracy and completeness of our reconstruction for the 47-
view templeRing dataset were 0.79mm and 94.9% respec-
tively. The same metrics for the 48-view dinoRing dataset
were 0.69mm and 97.2%.

Fig. 8 illustrates the results of an experiment performed
to demonstrate that our method is not limited by the topol-
ogy of the base surface. While the visual hull built from all
36 images has the correct topology, the visual hull built af-
ter omitting 10 images (the separation between the arm and
body is observed in these) has genus three. Our method still
recovers a model with the correct topology (see Fig. 8(e,f)).

The critical parameters of our algorithm are chosen as
follows. The patch size µ is typically 11 pixels while the
photo-consistency threshold T is chosen in the range of 0.4-
0.7 (a fraction between 0 and 1). A lower T is more con-
servative and retains more cells as active. The surface func-
tional parameters of σ is set to 0.1 in all our experiments
and λ is varied between 1 to 10. The stopping criterion for
recursive mesh refinement is based on the size of the finest
cells in the images; we typically stop when this is in the
range of 1 to 5 pixels.

Our method requires a smaller fraction of graph ver-
tices compared to approaches which construct uniform grid
graphs in the interior of the visual hull. Our mesh typically
has between 2-10 million cells and total running time are
typically 1 to 2 hours for each reconstruction.

5. Conclusions

We have presented a novel multi-view reconstruction
method that recovers surfaces at high resolution by per-
forming a graph-cut on the dual of an adaptive volumetric
mesh created by photo-consistency driven subdivision. We
do not need good initializations and are not restricted to a
specific surface topology (a limitation with base surfaces).
Our graph-cut formulation enforces silhouette constraints
to counter the bias for minimal surfaces. In future we
will investigate whether substituting the hard constraints
we enforce (interior or exterior labels) with per-cell data
penalties in the energy functional (similar to graph-cut
based Markov Random Field optimization) produces better
results. Our current implementation of local refinement
needs improvement. This will be addressed in future work.
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