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Figure 1: Two-layer decomposition for the GUITARIST image sequence: (a) portion of a sample input image, (b–c) its decomposition into
the two layers I0 and I1, (d) its reflection map β, (e) detail from an interpolated view using the two-layer model, and (f) using a one-layer
model. Notice how the one-layer rendering shows significant ghosting (doubled edges). Please zoom in on the images to see more details.

Abstract
We present a system for image-based modeling and rendering of
real-world scenes containing reflective and glossy surfaces. Previ-
ous approaches to image-based rendering assume that the scene can
be approximated by 3D proxies that enable view interpolation using
traditional back-to-front or z-buffer compositing. In this work, we
show how these can be generalized to multiple layers that are com-
bined in an additive fashion to model the reflection and transmission
of light that occurs at specular surfaces such as glass and glossy ma-
terials. To simplify the analysis and rendering stages, we model the
world using piecewise-planar layers combined using both additive
and opaque mixing of light. We also introduce novel techniques for
estimating multiple depths in the scene and separating the reflec-
tion and transmission components into different layers. We then
use our system to model and render a variety of real-world scenes
with reflections.
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1 Introduction

Image-based modeling and rendering are powerful techniques for
creating and visualizing photorealistic models of the real world.
Image-based modeling and related photogrammetric and computer
vision techniques are now widely used to create accurate texture-
mapped models of urban landscapes. However, such models appear
“flat” or “cardboard-like”, since they do not model the variation in
appearance as the viewer moves throughout the environment.

Image-based rendering techniques such as view-dependent texture
maps, Lumigraphs, and Light Fields [Debevec et al. 1996; Gortler
et al. 1996; Levoy and Hanrahan 1996], provide increased realism
by blending between different viewpoints. However, they still fail
to realistically depict scenes with reflections and gloss, since they
only use a single 3D proxy to locally model the scene.

What happens at surfaces with reflections that violate the assump-
tions of current image-based rendering systems? The answer is that
we observe the superimposed (transparent) motion of two differ-
ent scenes or textures at the same spatial location (Figure 2). In
order to correctly render such scenes, we need to separately ren-
der each of these layers, using appropriate per-layer geometry, and
then additively combine these images to produce the final rendering
(Figure 1).

While techniques have been developed in computer vision to tease
apart these layers (see Section 2), they have not been specifically
targeted at image-based rendering. In this paper, we develop novel
techniques and a complete image-based modeling and rendering
system for handling and depicting such scenes.

Our aim in this work is not to recover a true decomposition of the
3D scene into surfaces, normals, materials, and reflections or inci-
dent illumination. Instead, we take the usual image-based rendering
approach of interpolating nearby views to create new images. How-
ever, instead of moving each piece of a reference image according
to a single depth, we decompose the reflective parts of the scene
into two components, i.e., the transmitted and reflected layers, each
with its own 3D proxies, and blend these at rendering time.

2 Previous work

The main idea behind image-based rendering is that we can pre-
render or capture realistic views of a 3D scene and then interpolate
between them to render novel views [Chen and Williams 1993].
The foundational theory behind these approaches was worked out
in the seminal Light Field and Lumigraph papers [Levoy and Han-
rahan 1996; Gortler et al. 1996] and consists of interpolating rays
sampled from a four-dimensional light field to generate the required
rays for a novel view. The quality of light field interpolation and re-
sampling can be dramatically improved by storing or recovering
3D proxies for the scene, since these provide more accurate de-
scriptions of the motions of corresponding pixels and hence higher
quality interpolation [Gortler et al. 1996]. Such proxies (billboards
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Figure 2: Basic image formation process. (a) A ray from the cam-
era is reflected from the glass and hits the green sphere and is re-
fracted through the glass and hits the blue box; the dashed cameras
and rays indicate the second image, while the dashed circle indi-
cates the (additive) virtual image. (b) The same process, but drawn
as if the camera were still and the world (including the reflector)
were moving.

or depth maps) can also be used to store simple descriptions for
computing reflections in rendered imagery [Popescu et al. 2006].

Unfortunately, when reflections are present, what we observe is an
additive mixing of colors between two (or more) separate layers,
each of which moves at a rate depending on the virtual depth of the
perceived scene component (Figure 2). In this paper, we present a
system that estimates separate 3D proxies and color values for dif-
ferent scene components in areas of reflection and transmission. We
then use these to interpolate between input views with fewer jump-
ing and ghosting artifacts. While we could use any of a number of
3D representations for proxies, such as global 3D models [Gortler
et al. 1996; Buehler et al. 2001], we use piecewise planar models
(aka sprites) [Shade et al. 1998; Sinha et al. 2009], since these are
easier to estimate, compress, and render.

Before we can build such a system, however, we need to develop al-
gorithms to separate the input images into reflected and transmitted
components and to compute 3D proxies for each layer. In computer
vision, the problem of recovering multiple superimposed motions
is known as motion transparency and dates back to the early 1990s
[Shizawa and Mase 1991; Bergen et al. 1992; Irani et al. 1994;
Darrell and Pentland 1995; Ju et al. 1996]. Szeliski et al. [2000]
provide a good review of this literature. (See [Bhat et al. 2007; Dia-
mant and Schechner 2008; Beery and Yeredor 2008] for extensions
of this work to deal with more general scenes, multiple reflections
inside glass, and frequency-domain separation techniques.) Tsin
et al. [2006] give an even more extensive review of the multiple
motion literature, and also discuss related techniques such as deal-
ing with specular highlights [Bhat and Nayar 1998; Carceroni and
Kutulakos 2002], recovering reflected components using polarizing
filters [Schechner et al. 1999], and the local analysis of edges and
intensity ratios in single images to separate them into translucent
layers [Levin et al. 2002].

In their work, Szeliski et al. [2000] first estimate the motion of the
dominant (higher contrast) layer using a robust parametric (affine
or projective) optical flow algorithm. After this initial registration,
they compute a min-composite to recover a lower bound on this
first layer’s colors, and then use a max-composite of the residual
difference images to over-estimate the second layer and to recover
its associated motion. They then solve a constrained least-squares
problem to refine the images associated with both layers. They also
discuss the ambiguities inherent in this problem. In Section 6, we

use similar techniques to perform our per-layer image recovery, but
use a more accurate piecewise-planar motion recovery algorithm
and a more robust formulation to deal with small misalignments.

Tsin et al. [2006] describe a stereo matching algorithm that simul-
taneously estimates two disparities (inverse depth values) at each
pixel using an additive color mixing model. To compute these dis-
parities, the algorithm compares quadruplets of color pixel values to
see if they are consistent with a paired disparity hypothesis (d0, d1).
A “graph cut” [Boykov et al. 2001] combinatorial optimization al-
gorithm is then run to estimate the front and rear disparity surfaces
d0(x, y) and d1(x, y) that simultaneously minimize the matching
costs and maximize a smoothness term. Since the number of dis-
parity pair hypotheses at each pixel is quite large (D2, where D
is the number of disparities), their algorithm is quite slow. In this
paper, we introduce an alternative algorithm that first aggregates
the cost volume using semi-global matching [Hirschmüller 2008]
(Section 4), then globally estimates a small number of likely scene
planes, and finally uses graph cut optimization to assign each pixel
to one or two planes (Section 5), resulting in a much faster algo-
rithm that is also less sensitive to radiometric miscalibrations.

The preceding papers all assume that the reflectors in the scene are
planar, resulting in stable virtual images for the reflections (Fig-
ure 2). What happens if the reflectors are curved or irregular? For
simple reflectors such as lightly curved parabolic mirrors, a stable
virtual image is still observed, albeit at an incorrect depth. This
inaccuracy, however, will not affect the performance of an image-
based rendering system. For more undulating reflectors, the epipo-
lar motion (flow) of pixels becomes less regular and rectilinear. Cri-
minisi et al. [2005] analyze this case in more detail, and also de-
velop an algorithm for detecting and removing saturated highlights
using epipolar plane image (EPI) analysis.

3 Problem formulation

In order to recover and re-render the two-layer geometry and colors
at a reflective surface, we first need to define the image formation
process that occurs at such surfaces. Figure 2 shows a diagram for
the two-layer model, where a camera sees light transmitted through
a material such as glass as well as reflected light, which produces a
stable virtual image. For materials such as glossy textured surfaces
(paintings matted with glass, textured countertops), the geometry
corresponding to the “transmitted” light coincides with the reflec-
tive surface. However, our system is designed for general geome-
tries where neither virtual image depth coincides with the reflective
material, e.g., the glass case shown in Figure 6a.

At reflective material boundaries, the incident reflected light is at-
tenuated by a fraction β ∈ [0, 1] that depends on the reflective ma-
terial’s BRDF or Fresnel reflection coefficient.1 The transmitted
component can potentially undergo a similar attenuation, but for
most materials, such as plate glass or clear coat or varnish, it passes
through the interface unattenuated. Given these conditions, the ob-
served composite color C can be described by

C = I0 + βI1, (1)

where I0 denotes the transmitted light and I1 denotes the reflected
light. The reflective fraction β is non-zero at reflective surfaces and
zero at matte opaque surfaces, indicated in gray in Figure 2.

When we try to recover the quantities I0, I1, and β (along with
their appropriate geometries, which we introduce shortly), there
arise a few subtle ambiguities. The first of these is that we can-
not disambiguate between larger reflection coefficients β and larger

1The BRDF can also low-pass filter or blur the incident virtual image.
However, we fold this blurring process into the reflection image itself.



amounts of incident light I1. To resolve this ambiguity, we assume
that reflective surfaces have a constant non-zero coefficient β. We
can therefore fold this constant factor into I1 and assume that the
β values are either 1 (in two-layer regions of the image) or 0 (in
single-layer regions).

The second ambiguity is that unless we use additional cues such
as polarization, we cannot distinguish between the transmitted and
reflected components, since both appear as stable virtual images.
In this paper, therefore, we do not attempt to distinguish between
them, and simply call the one whose virtual image appears closer
to the camera (smaller depth) as the front layer I0 and the other
as the rear layer I1. Equation (1) therefore describes the linear
superposition of the front layer I0 with an optional rear layer I1.

Our image-based rendering system starts with a collection of input
reference images Ci. Each image is decomposed into its front and
rear layers I0 and I1 and reflectivity map β, along with the inverse
depths (disparities) d0 and d1 associated with each layer [Szeliski
et al. 2000; Tsin et al. 2006]. This decomposition is computed by
predicting the appearance of nearby input images Cj from the de-
composition of Ci = {I0, I1, β} and then minimizing the discrep-
ancy between the predicted (synthesized) and observed (reference)
images.2

The image formation equations for nearby views are given by

Cj(x) = I0(u(x, d0)) + β(u(x, dβ)) I1(u(x, d1)), (2)

i.e., by warping, multiplying, and adding the appropriate source im-
ages. The function u(x, dl) maps a pixel x in image j into a source
pixel address in reference image i, based on the disparity map dl(x)
associated with that particular layer. The form of such maps is a ra-
tional linear equation in x and d, which can be derived from the rel-
ative pose and intrinsic calibration parameters of the two cameras i
and j or equivalently their camera matrices [Szeliski 2010, (2.70)
and (11.3)]. These maps are piecewise continuous, but can have
tears (gaps) at depth discontinuities where no pixels get mapped to
the second view (resulting in a zero intensity contribution).

In practice, there arises a third ambiguity associated with Equation
(2). Since the reflective material associated with β is not directly
observable, we cannot reliably estimate the depth map dβ associ-
ated with this surface, only a range of plausible values.3 For this
reason, we set dβ = d0, i.e., we assume that the deformation of
the reflector, which affects which pixels in image j see both layer
components, is the same as that of the front layer. For single-layer
surfaces (the gray regions in the plane in Figure 2), this produces the
correct model. For transmissive/reflective pixels, it is still a sensi-
ble choice since, in the absence of discontinuities in d0, it correctly
predicts which pixels in the image are reflective. In future work, we
would like to develop algorithms for estimating a plausible value
for dβ as part of the optimization process.

Minimizing the difference between the observed images and the
images synthesized using (2) introduces a set of coupled problems.
Given known depths d0, d1, and reflectivity values β, solving for I0
and I1 is a constrained least-squares problem [Szeliski et al. 2000].
Conversely, if the per-layer colors I0 and I1 and the β-map are
known for all frames, the problem reduces to two uncoupled stereo
matching problems. Unfortunately, we begin with no knowledge of
any of these variables. In the next section, we develop a multi-view
transparent stereo matching technique that produces multiple plane

2The actual renderer (Section 7) uses two-view interpolation, but for the
purposes of multi-view stereo and layer color recovery, we use the single
view interpolation formula.

3Consider again the glass case in Figure 6a. The 3D motion of this case
determines which pixels in the image will show the reflected virtual image
and which will not.

hypotheses, which are then used in Section 5 to assign each pixel
to one or two planes, thereby producing the d0, d1, and β maps for
every image. Section 6 then describes how we recover the color
values using our own variant of regularized weighted constrained
least squares. Our rendering approach using the resulting per-image
models is described in Section 7.

4 Two-layer stereo matching

Before we begin our reconstruction process, we first estimate the
locations and intrinsic calibration parameters of the input cameras
using feature matching followed by a photogrammetric structure
from motion (SfM) pipeline similar to the one described by Snavely
et al. [2006]. Next, in order to compute two-layer depth map
proxies for each reference image, we perform asymmetric stereo
matching on calibrated image subsets by extending the semi-global
matching approach [Hirschmüller 2008] to handle two layers, as
described below.

Computing the disparity space image (DSI): For each input (ref-
erence) image, we construct a 3D matching cost volume (defined
below) using a plane-sweep framework. The depth range of the
stack of fronto-parallel planes is computed based on the depths of
the SfM points visible in the reference view, while their spacing is
inversely proportional to depth. The minimum of the spacing that
corresponds to roughly one pixel shifts in each of the two neighbor-
ing views is selected. This corresponds to linear disparities (pixel
motions) in the case of regularly spaced sideways-looking motion.

The images used for computing the matching costs are selected by
finding the N neighboring views which have the maximum num-
ber of SfM 3D points in common with the reference view. These
images are then warped into the reference view using the set of 2D
homographies induced by each individual plane in the plane sweep
volume. We use pairwise normalized cross correlation (NCC) as
the photo-consistency measure and use it to derive the matching
cost volume, i.e., the disparity space image (DSI) [Szeliski 2010].
For small window sizes, NCC performs similarly to matching gra-
dient images, since it subtracts the local mean from each window
and hence accentuates high frequencies. We expect such measures
to be less sensitive to the addition of secondary light in regions
where two images (reflected and transmitted) are being mixed.

To compute the matching cost for a particular plane, we densely
compute NCC between the reference image and the j-th warped
image. At each pixel p, the final matching cost cp is computed as

cp =

N∑
j=1

(1−NCC(xp,y
j
p)), (3)

where vectors xp and yjp are µ × µ pixel patches centered at pixel
p in the reference image and the j-th warped image respectively. In
all our experiments, we setN = 2 and µ = 3. The construction of the
matching cost volume described so far is identical to a traditional
single-layer stereo matching approach.

Semi-global matching: We perform stereo matching using
an extension of the semi-global matching (SGM) approach of
[Hirschmüller 2008], which is known to be comparable to global
methods in terms of accuracy, without being as computationally
expensive. In SGM, a particular pixel’s depth is computed by ag-
gregating information from pixels along several 1D paths in the im-
age that meet at that pixel. SGM uses dynamic programming to
compute the lowest aggregated cost for all pixels on each of these
1D paths. A summed cost is then computed by adding up the costs
of the individual paths to obtain a set of aggregated costs Cp(d) at
each pixel p. Finally the depth or disparity of each pixel is com-
puted independently using a winner-takes-all strategy.



In our method, we perform cost aggregation using paths from the
eight cardinal and ordinal directions. While computing the aggre-
gated cost, we add a small constant penalty for small depth differ-
ences. This is similar to the way single pixel disparities are handled
in [Hirschmüller 2008]. For larger depth changes, we add a larger
penalty, which is adapted to the gradient magnitude to favor depth
discontinuities at strong intensity edges in the image. We modify
the final step of the original approach as follows. Whenever possi-
ble, we compute two depth estimates per pixel instead of a single
depth estimate as in the original approach. For each pixel p, we an-
alyze its 1D distribution of aggregated costs Cp(d) within the full
depth range of the plane sweep volume. We compute all local min-
ima of this sampled 1D function. Specifically, we compute a set of
depth hypotheses {d∗i } such that Cp(d∗i ) < Cp(d) for a local 1D
neighborhood where d∗i −w1 ≤ d ≤ d∗i +w1. Here, the parameter
w1 controls the size of the depth interval for each local minimum
and is specified in terms of pixel disparities. In our experiments,
w1 is set to 2. Sub-pixel refinement is performed for each depth
estimate by computing a quadratic fit to the adjacent cost values in
the depth interval.

At each pixel, the depth corresponding to the global minimum is
selected as the primary depth estimate dp. To select the secondary
depth estimate ds, all hypotheses in the set {d∗i } within a depth
interval dp ± w2 are first discarded. Here w2 is set to 5. If at
most two hypotheses remain, the one with the smaller cost is se-
lected as the secondary depth estimate. However, if more than two
depth hypotheses are available, the secondary depth estimate ds is
not computed at such pixels, since all the available hypotheses are
likely to be unreliable.

The two-layer depth map computed in this manner contains either
one or two depth estimates at pixels with valid depths. Two slices
of the matching cost volume are shown for visualization in Figure 3
for one of the images in the GUITARIST sequence, both before as
well as after the cost aggregation step. The example in Figure 3(a–
d) demonstrates that for strong reflections, two distinct layers exist
in the matching cost volume after the aggregation step. This ag-
gregation step is particularly important for recovering the depth of
the reflected layer since the gradients in this layer are typically at-
tenuated and the evidence in the original matching cost volume is
weaker compared to the transmitted layer. However, in spite of
the cost aggregation, the per-pixel depth estimates for the reflected
layer are often sparse and noisy. This is addressed in the next stage
by generating piecewise planar depth maps for both layers.

5 Computing piecewise-planar 3D proxies

In our system, we use two separate 3D proxies for each image to
model the geometry associated with the light coming from the re-
flected and transmitted scene components. Each of these two layers
is represented by a piecewise-planar depth map defined in terms of
a set of 3D scene planes and a labeling of each pixel to one of these
planes.

Our two-layer proxies are computed as follows. First, a set of 3D
planes corresponding to the dominant scene surfaces as well as the
virtual reflective surfaces are recovered. Next, a pixel labeling is
computed such that each image pixel is assigned to one of the 3D
scene planes. This labeling determines the extent of each 3D poly-
gon in the piecewise-planar depth map for each of the two layers.
A binary pixel labeling is also computed, which indicates which
pixels are reflective and require two layers to model observed re-
flections and which pixels are opaque, and hence can be modeled
with a single layer.

Our approach is related to prior work on piecewise-planar stereo
[Furukawa et al. 2009; Sinha et al. 2009; Zebedin et al. 2008;
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Figure 3: MATCHING COST VOLUME: (a) For the vertical scanline
(in red) in the reference image a vertical slice of the original match-
ing cost volume is visualized in (b). Blue represents low matching
costs, disparity increases from left to right. (c) The correspond-
ing slice in the aggregated cost volume after performing SGM. (d)
The detected minima. Note how two minima are extracted at pixels
where strong reflections are present, giving rise to two depth values
at those pixels. (e–h) A different vertical slice of the cost volume
without strong reflections. In this case the 1D slice of the depth
map is mostly single-layered.

Gallup et al. 2010]. However, unlike these methods, which as-
sume opaque surfaces, our approach explicitly models reflections
and computes two-layer depth maps. Reflections were modeled us-
ing two-layer disparity maps in [Tsin et al. 2006] using a nested
plane-sweep approach and enumerating all pairs of disparities in the
disparity range. This is computationally expensive when handling
a large disparity range. In contrast, we use a piecewise-planar rep-
resentation for the proxies and propose a more efficient graph cut
based energy minimization formulation by first identifying scene
planes and then restricting the labels to a small set of planes and
plausible overlapping pairs of planes.

Plane extraction: We now describe our approach for recovering a
set of scene planes for both layers by robustly fitting multiple planes
to a subset of the 3D points {Xi} obtained from the stereo matching
step described in the previous section. All 3D points corresponding
to pixels with only primary depth estimates dp are first selected.
For pixels with both primary and secondary depth estimates dp and
ds respectively, the two corresponding 3D points are selected when
dp < ds; otherwise only the point corresponding to dp is selected.

A set of planar 3D patches or surfels {sj} are now computed by
performing local plane-fitting on the selected 3D points. Each sur-
fel sj is represented using a 3D point Xs

j and a normal vector Ns
j .

To compute the surfels, the reference image is divided into bins de-
fined on the 2D pixel grid. The 3D points {Xi} are assigned to
these bins based on their 2D image projections. At a pixel j, up to
two surfels are computed from all 3D points which project within
a 7 × 7 pixel neighborhood of j using sequential RANSAC after
which the surfel parameters are re-estimated from the inliers using
total least-squares [Weingarten et al. 2004]. Unstable surfels that
have fewer than 10 inliers or lie at a grazing angle to the camera
ray are pruned. Even though regions such as blank walls may not
generate any surfels, hypotheses for such surfaces may still be gen-
erated from markings such as labels or posters lying on these walls.
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Figure 4: (a) An image from the GUITARIST sequence. (b) Cor-
responding binary mask indicates pixels with two depth estimates
(in blue). (c) The pixel-labeling computed using graph-cut based
energy minimization. (d) The corresponding binary mask indicates
image segments having two layers (blue) and a single layer (red).
(e – f) The front and rear layer depth maps induced by the pixel-
to-plane labeling. The pixel intensity in the visualized depth maps
is proportional to inverse depth. Note that the rear depth map is
visualized here with the depth of the front layer wherever a single
layer was estimated.

The set of multiple planes Π = {πi} is now computed using a
seed-and-grow approach for robustly clustering the surfels on the
basis of coplanarity. Our clustering approach is motivated by
prior work in variational shape approximation and mesh simplifi-
cation [Cohen-Steiner et al. 2004]. The seed-and-grow clustering
aims to minimize the total approximation error given by the ob-
jective

∑
ji f(sj , πi), where the function f(s, π) = |d − dπ|/d

measures the error incurred by assigning surfel s to plane π. d and
dπ denote the depth of the surfel point Xs and the depth of the 3D
point, where the ray through the camera’s center of projection and
Xs intersects the plane π.

We construct a graph where the nodes represent the surfels and
edges are present between those pairs of surfel nodes that corre-
spond to pixels within a distance of w pixels from each other in the
image (we use w = 5). Iterative seed-and-grow clustering is now
performed on this graph using the approach proposed by Cohen-
Steiner et al. [2004]. On convergence, the planes corresponding to
the M largest clusters with at least m surfels in each cluster are
selected as the representative scene planes. In our implementation,
parameters M and m are set to 100 and 32 respectively.

Identifying overlapping planes: The surfel clusters induce a one-
to-many partial labeling L of pixels to planes. We inspect L for
the presence of pixels assigned to pairs of overlapping planes and
enumerate all such pairs. This list is further pruned to select pairs
of planes for which the pixel count in L is greater than a threshold
(set to 100 in our implementation). TheM1 planes in the set Π and
the M2 overlapping plane pairs denoted as Q = {(πu, πv)} where
u, v ∈ (1 . . .M1) constitute the set of labels {1, . . . (M1 + M2)}
used in the subsequent graph cut optimization stage.

Graph cut optimization: Given the set of labels that represents
the extracted planes and the restricted subset of plane pairs, we for-
mulate the estimation of the two-layer piecewise-planar depth map
as a multi-label MRF optimization problem [Boykov et al. 2001;
Sinha et al. 2009]. The pairwise MRF is defined on a graph with
the set of pixels P as nodes and all pairs of adjacent pixels on a
4-connected grid denoted byN as edges. We compute the labeling
L that minimizes the energy

E(L) =
∑
p∈P

Ep(lp) +
∑

(p,q)∈N

Epq (lp, lq) . (4)

The unary term Ep(lp) measures the penalty of assigning pixel p to
label lp ∈ {1, . . . (M1 +M2)} based on how well the correspond-
ing plane or planes approximate the observed depths at that pixel.
The pairwise term Epq(lp, lq) measures the penalty of assigning
pixels p and q to labels lp and lq respectively. The label lp repre-
sents an individual plane πlp ∈ Π when 1 ≤ lp ≤M1 and a pair of
overlapping planes (π1

lp , π
2
lp) ∈ Q when M1 < lp ≤ (M1 +M2).

We obtain an approximation to the Maximum a Posteriori (MAP)
labeling using the α-expansion algorithm [Boykov et al. 2001].

Unary term (Ep): The penalty of assigning a pixel p to a particular
label lp is obtained by computing the sum

Ep(lp) = EZp (lp) + EOp (lp),

where the term EZp measures the geometric error of the piecewise-
planar approximation induced by label lp and the term EOp is used
to encourage opacity (one layer) and reflectance (two layers) selec-
tively at different pixels in the image. The energy terms for these
different cases are defined in Equations (10–13) in Appendix A.
The key idea is to encourage a tight fit to the observed data while
penalizing reconstructed depth values that do not contribute to a
fitted plane.

Pairwise term (Epq): The pairwise term is modeled using a
contrast-sensitive Potts model [Boykov et al. 2001]. For neighbor-
ing pixels p and q, Epq(lp, lq) = γ0 + γ1 exp

(
−γ2|Ip − Iq|2

)
,

when lp 6= lq , where Ip and Iq are the intensities at pixels p and
q. The parameter values were set empirically to γ0 = 1.0 and γ2 =
0.001; γ1 is set to 10.0 when at least one of the two labels lp and lq
corresponds to a pair of planes but at the same time the two labels
do not share any plane in common, otherwise γ1 is set to 5.0. A
higher penalty is assigned in the former case since a depth disconti-
nuity is unlikely to occur at the same pair of pixels simultaneously
in both the front and rear layers of the two-layer depth map.

Reflectivity Field: The labeling L obtained via graph cuts implic-
itly produces a binary labeling of all pixels, which serves as the
estimate of the reflectivity field. For pixels assigned to overlap-
ping planes in L, the corresponding β value is set to 1 to indicate
that these pixels are reflective; otherwise, it is set to 0 to represent
opaque pixels.

6 Recovering component colors

Once we have computed the depth and reflectivity fields d0, d1,
and β for each reference image, we can estimate the corresponding
layer colors I0 and I1 using a weighted constrained least-squares
approach similar to the one described by Szeliski et al. [2000].
Since d0, d1, and β are known and fixed, we can describe the effect
of warping the images originally given in (2) using known sparse
warping matrices,

cj = W j0 i0 +W j0 β ·W j1 i1, (5)

where i0, i1, and β are vectorized (raster-order) representations
of the layer colors I0, I1, and β, the W jl are the sparse warping



matrices corresponding to layer l in input image j, and · represents
component-wise multiplication. In practice, we never actually form
the sparseW matrices, but use image warping with bilinear resam-
pling for the β images (to avoid ringing) and bicubic resampling
for the color layers to transform images between the reference and
neighboring views (and vice-versa).

Constrained least squares: The synthesized images cj are then
compared against the input images ĉj , and the values of the un-
known layer colors are recovered by minimizing a weighted con-
strained least-squares problem,

min
∑
j

‖wj · (cj − ĉj)‖2 s.t. 0 ≤ il ≤ 1. (6)

The per-pixel weighting terms wj are normally 1 but are set to 0
whenever an input pixel (band) is saturated and the corresponding
synthesized pixel value is at least as large.4 In our current imple-
mentation, each reference image is matched against its ±2 nearest
neighbors.

Gamma curves: Note that the layer color values il are restricted
to lie between 0 (black) and 1 (white).5 The source images we use,
which are downsampled versions of regular JPEG images, represent
colors in a gamma-mapped sRGB space, so we undo this gamma
correction to obtain a linear (calibrated) color space when we read
in the images, and we apply the inverse correction when we write
out the per-layer component colors. Our image-based renderer per-
forms a similar transformation in order to faithfully model the addi-
tive mixing of pixel irradiances. To compensate for auto white bal-
ance (AWB), auto gain control (AGC), and exposure differences,
we also compute per-color-channel histograms of the residual er-
rors cj − ĉj vs. the original color values ĉj , fit a parabolic curve
with 0 values at the [0, 1]extrema to these errors, and add this offset
to the residual as part of the optimization criterion.

Initialization: To initialize the constrained least-squares optimiza-
tion, we first compute a min-composite of the input images aligned
to the reference frame, compute the difference between single-
layer synthesized images and the input, and then compute a max-
composite of the resulting difference images—please see [Szeliski
et al. 2000] for a more detailed description of this process and why
it produces sensible initial solutions. Note that this initialization
does not affect the final solution value, since we have a convex op-
timization problem, but simply speeds up the computations.

Conjugate gradient descent: In order to exploit the special char-
acteristics of our optimization problem, we use a constrained non-
linear conjugate gradient descent algorithm.6 At each step, we syn-
thesize the images cj by warping and compositing the current layer
estimates using (5) and then compute the difference (residual error)
images. We then weight these errors by the saturated pixel weights
wj (which can vary from iteration to iteration), multiply the layer
1 residual by the warped β field, warp the residuals back to the ref-
erence image, and add them up to produce the current gradient es-
timate. Gradient components at pixels that are already on the [0, 1]
boundary are set to 0 if they point outward.

Next, the gradient vector is conjugated with the previous search di-
rection using the Polak-Ribiere formula [Nocedal and Wright 2006]
to produce a new descent direction. We then perform a line search

4The resulting problem is still convex.
5It is not strictly necessary to constrain il ≤ 1, but this makes the prob-

lem well-posed at saturated pixels.
6We use nonlinear conjugate gradient descent because the (sub-) gra-

dients differ from iteration to iteration, depending on which pixels are on the
[0, 1] boundary or saturated, and which ones are in the interior (quadratic)
region.

with local quadratic fits to the energy to determine the step size.
During this process, whenever the update produces color values
outside the 0 ≤ il ≤ 1 range, they are clipped. More detailed
descriptions of (nonlinear) conjugate gradients can be found in [No-
cedal and Wright 2006]. The resulting algorithm produces reason-
able results, but is sensitive to noise and small misregistrations be-
tween the images.

Regularization: To compensate for misalignments and noise sen-
sitivity, we add a regularization term. The quadratic objective func-
tion (6) is augmented with two regularizing terms

λ1(‖D i0‖p + ‖D i1‖p) + λ0‖i1‖p, (7)

where D indicates the horizontal and vertical derivatives between
adjacent color pixels, 1 < p ≤ 2 is the regularization exponent,
and λ1 and λ0 are the regularization parameters that control the
desired smoothness and a bias towards 0 (black) pixels in layer 1,
respectively. We experimented with both quadratic p = 2 and non-
quadratic p ∈ [1.2, 1.5] regularization, and found that while the
latter produces slightly sharper results, the former converges much
more quickly, so that is what we use. The regularization parameters
were tuned to λ0 = 0.001 and λ1 = 0.5.

Matching the reference image: In our image-based renderer, we
would like the synthesized image ci to match the input reference
image ĉi, since then we can display the original artifact-free image
when an image-to-image transition terminates [Zitnick et al. 2004;
Snavely et al. 2006]. In order to do this, we need to make (6) be
exact whenever j = i. We can do this by splitting any accumulated
error between the two layers (unless one of them is already at the
feasible [0, 1] boundary). To make the gradient descent work bet-
ter, we also modify the computed gradient so that the sum of the
two layer gradients at each pixel (in non-saturated regions) is zero,
i.e., we subtract any average gradient component between the two
layers.

Downweighting strong edges: Small misalignments between im-
ages due to inaccuracies in the 3D modeling, e.g., deviations from
planarity, can lead to “echoes” in the reconstructed image at sharp
edges. In order to compenstate for this, we set the weighting func-
tionwj in (6) to g2

min/(g
2
min + g2), where g is the largest absolute

finite difference (gradient) between a pixel and its four neighbors
and gmin is set to 5 gray levels. To further mitigate the effects of
misalignments, we also low-pass filter the residual errors cj − ĉj
in (6) with a Gaussian blur of σ = 1.

Figures 1 and 6 show the results of running our layer separation
algorithm on six different data sets. As you can see, our approach
does a good job of separating the reflected from the transmitted
light, although, as also observed by Szeliski et al. [2000], it some-
times has trouble correctly assigning low-frequency components to
the appropriate layer. It also occasionally produces other artifacts,
as discussed in Section 8 below.

7 Image-based rendering with reflections

Our representation supports a simple image-based rendering tech-
nique that we implemented on standard graphics hardware. Any
IBR algorithm is most successful when the novel views are close to
the input camera poses. Since most of our scenes are object-centric
linear sequences, we first describe an algorithm for fitting a smooth
approximating path to the estimated camera locations, which we
use to navigate around the scene in both our videos and in the inter-
active viewer that we built.

Assuming that there is a central object in our scene and that the
input cameras are facing this object, we can estimate its location as
the point in space where the camera optical axes intersect. Since
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Figure 5: Block diagram of our rendering algorithm. Please refer
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our datasets are captured in a casual way, the camera axes typically
do not intersect in a single point. Hence, we estimate the object
location as the point that is closest to all camera axes by solving a
small linear least-squares system.

Next, we fit a least-squares plane to all camera locations and use this
plane to embed the camera path. We project all the camera locations
and the object center onto that plane, and then compute a smooth
arc around the object that passes near the camera locations. The
novel views in our supplementary videos are generated by moving
the camera along this arc while always facing the estimated object
center. In our interactive viewer the user moves the camera along
this path by dragging the mouse. When the user releases the mouse,
we allow the camera to drift towards the nearest reference view,
where the rendering looks perfect by design. This camera behavior
feels intuitive and enhances realism in an interactive session, as can
be seen in the accompanying video.

Given the parameters of a novel view, we render the scene by blend-
ing the I0, I1, and β estimates from multiple input cameras. First,
we select the set of cameras we want to use and their relative con-
tributions. Since we are working with simple linear sequences, we
simply project the input camera locations onto the path and use the
closest camera on either side of the novel camera, i.e., we blend the
closest left and right cameras along the path. The blending weights
are given by their relative distance to the novel camera. Note that
while we blend only two cameras to produce the results for our
paper, our algorithm is capable of rendering from more than two
views and is formulated below in a more general setting. Buehler
et al. [2001] describe selection and blending heuristics for more
general, unstructured scenes.

We index the set of cameras we are rendering from with an index i.
Let Ĩi0, Ĩi1, β̃i denote the warped components of camera i, rendered
as seen from the novel view. Note that not every pixel in these
renderings is defined, since there might be visible gaps. Let αi ∈
{0, 1} indicate whether a pixel has a contribution from camera i or
not and wi be the relative weights of the cameras. We now blend
the cameras using

Ĩblend
0 =

∑
i w

iαiĨi0(x)∑
i w

iαi
(8)

and equivalent equations for Ĩblend
1 and β̃blend. In other words, if

a pixel is seen by multiple cameras, we blend their relative contri-
butions. If a pixel is seen by only one camera, it takes that value.
Pixels that are not seen by any camera remain undefined. We com-
bine the αi maps using

αblend = max
i
αi. (9)

Name #Images Resolution Ts Td Tp Tl Timings

GUITARIST 36 1024 × 576 0:02 0:04 1:00 0:32 1:38 (0:03)
GLASS CASE 41 1024 × 576 0:05 0:16 1:10 0:31 2:02 (0:03)
STATUE 39 1024 × 576 0:05 0:10 1:08 0:30 1:54 (0:03)
GALLERY 76 1024 × 768 0:08 0:22 2:20 0:57 3:47 (0:03)
TABLE 20 576 × 1024 0:02 0:10 0:23 0:16 0:51 (0:03)
CAR 23 640 × 480 0:01 0:03 0:46 0:14 1:04 (0:03)

Table 1: DATASETS/TIMINGS: For each sequence, the image res-
olution, the image count and details of the running times of our
approach on a single CPU core (hour:minutes) are listed. Columns
Ts, Td, Tp and Tl list the timings for the various stages; namely,
the SfM, stereo matching, 3D proxy computation and layer sepa-
ration stages respectively. The last column lists the total running
times and the average per image timing is specified in brackets.

To generate nicer looking visuals, we fill any remaining holes due
to disocclusions, i.e., pixels where αblend takes a zero value, using
a smooth membrane, implemented using a strategy similar to the
pull-push algorithm described by Gortler et al. [1996].

In the pull phase, we compute a full RGBα Laplacian pyramid for
the (Ĩblend

0 , αblend) and corresponding Ĩblend
1 and β̃blend RGBα

pairs. Here α can take on fractional values, except at the finest
level of the pyramid. In the push phase, we work our way down
the pyramid, starting at the coarsest, single-pixel level, for which
there are no α = 0 pixels. We first divide the current RGBα values
by α to get full opacity un-multiplied colors. At finer levels, we
upsample the coarser parent level and add in the signed Laplacian
details, and then divide again by α to get full opacity values.

Once we have obtained the filled-in maps Ĩfilled
0 , Ĩfilled

1 , and β̃filled,
we use Equation (1) to compute the final result.

8 Experimental results

In order to test the validity of our image-based modeling and render-
ing approach, we collected a variety of image sequences using reg-
ular hand-held photography. Since our system does better when the
images have constant exposure and color balance, we either locked
the exposure on the camera, or chose subsets of images where the
exposure was fairly constant. The sequences were mostly taken
while moving horizontally and keeping the camera roughly fixated
on a reflective object of interest.

Figures 1 and 6 show the results of running our layer separation al-
gorithm on six different data sets. Each row shows one reference
frame, along with the two recovered layer colors and the reflectiv-
ity map. Due to lack of space, we mostly do not show the depth
maps and other intermediate results corresponding to these images.
Figure 4 shows the intermediate results (raw depth values and fi-
nal plane, reflectivity, and depth labellings) for the GUITARIST se-
quence. The intermediate results for the other sequences are given
in the supplemental materials, which can be found on the confer-
ence DVD and our project Web page.

In the supplemental materials we also compare our layer color sep-
aration results against the simpler algorithms used in [Szeliski et al.
2000; Tsin et al. 2006]. Overall, the new algorithm, which has addi-
tional terms penalizing extra light in the secondary reflection layer
and terms to deal with small misalignments, attributes less stray
light to the reflection layer.

Table 1 shows the timings for each of our stages on all six se-
quences. The average running time per image was under 3 min-
utes when processing them at a resolution of 1024 × 576 pixels
on a single core 3GHz CPU on a PC with 24GB RAM. Both the
proxy computation and layer separation stages, which dominate the



running time, are easy to parallelize on multi-core platforms as the
per-image proxy representation in our method allows multiple im-
ages to be processed simultaneously.

To compare with [Tsin et al. 2006], we modified the two-layer
piecewise planar proxy computation stage in our method. Instead
of using the proposed method, we implemented a method that con-
siders the same number of paired depth hypotheses as [Tsin et al.
2006] and has similar computational complexity to their method.
Specifically, we used a set of fronto-parallel planes that induced
uniform disparity steps in the image, and used all the nested pair of
planes as labels in the graph cut optimization. When the disparity
range is manually set to 30 pixels for images at 1024 × 536 res-
olution, this generated 435 nested plane pairs or labels. Note that
this is a conservative estimate of the disparity range; in practice it is
often as high as 70-80 pixels, since it is determined automatically
from feature correspondences. For the GUITARIST sequence, this
graph cut optimization with 435 paired hypotheses took 7 min 52
seconds per image on average. Two such graph cut problems must
be solved in [Tsin et al. 2006], once for the front layer and once for
the rear layer. In comparison, our graph cut step took 70 seconds
with 45 labels (32 plane hypotheses and 13 plane pairs) on average.
With the additional overhead for estimating candidate planes, our
method is overall about six times faster.

Looking at the results in Figures 1 and 6, we see that our approach
mostly does a good job of separating the reflected from the trans-
mitted light. However, as noted in [Szeliski et al. 2000], our system
sometimes has trouble correctly assigning low-frequency compo-
nents to the appropriate layer. We can also occasionally notice faint
high-frequency “echoes” of strong edges. These are due to small
misalignments between the images mostly due to the approxima-
tions induced by our piecewise-planar 3D proxies. While the edge
downweighting and residual low-pass filtering terms introduced in
Section 6 help mitigate these effects, some echoes can still be seen,
particularly in sequences such as STATUE, where the piecewise-
planar nature of our proxies fails to capture the detailed shape of
the face of the statue.

Additional artifacts that can be seen by viewing the image-based
rendering video sequences include incorrect geometry, due to fail-
ures and frame-to-frame inconsistencies in the stereo matching
pipeline, and incorrect reflectivity estimates. Some of these arti-
facts are most visible in the CAR sequence, where overestimating
two-layer regions around the occlusion boundary of the car and fail-
ures of the stereo in the strongly slanted regions of the fenders leads
to ghosting. Improving these estimates using global 3D modeling
and by re-estimating the β component during our least-squares ap-
pearance recovery stage (6) is a promising area for future research.

9 Conclusions

In this paper, we have developed a system for estimating two-layer
image-based models for rendering scenes with reflections and gloss.
The use of two 3D proxies per image, one for modeling transmitted
light and the other for modeling reflected light, greatly increases
the realism of image-based rendering in such scenes. Our system
consists of a transparent (multiple-depth) stereo algorithm, a two-
layer piecewise-planar depth labeling component, a regularized
color separation algorithm that models effects such as saturation
and slight misregistrations, and an interactive hardware-accelerated
image-based rendering viewer. Because we use two regular images
for each input reference view along with compact piecewise-planar
proxies, we can efficiently represent and transmit the information
required for our image-based renderer. Our experimental results
demonstrate a notable improvement in rendering quality over tradi-
tional single-proxy systems.

In future work, we plan to improve the quality of the reflectivity
estimate β by jointly estimating it as part of our least-squares ap-
pearance recovery stage (6). We also plan to improve our stereo
matching components by using the results of per-frame depth esti-
mation to reinforce and correct each other, and to develop a more
detailed representation of surface shape, which should help reduce
artifacts due to misalignments.

In even longer-term research, we would like to model small local
variations in reflector geometry, e.g., the sag and bowing in glass
that occurs at window edges. We would also like to model spatially
varying reflectivity, which occurs due to the Fresnel effect and is
most pronounced when looking at reflections in water and through
windows at varying incidence angles. These extensions will widen
the range of reflective and glossy scenes that can be successfully
modeled and further increase realism in image-based rendering.
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A Formulas for unary matching terms

In this appendix, we give the detailed formulas for the energy terms
introduced in Section 5. Here, z1 and z2 denote the two depths at
pixel p. Similarly, y1 and y2 denote the depths induced by planes
π1
lp and π2

lp at p. Depending on whether one or two depths are avail-
able and whether lp corresponds to a single plane or two planes,
there are four cases to be considered when defining the geometric
term EZp and opacity term EOp that encourages a single layer:

• 1 sample, 1 plane:

EZp = g(z1, y1), EOp = 0 (10)
• 2 samples, 1 plane:

EZp = min(g(z1, y1), g(z2, y1)), EOp = K1 (11)
• 1 sample, 2 planes:

EZp = min(g(z1, y1), g(z1, y2)), EOp = 1− g(y1, y2) (12)
• 2 samples, 2 planes:

EZp = min(g(z1, y1)+g(z2, y2), g(z1, y2)+g(z2, y1)),

EOp =

{
1− g(y1, y2) if C(p) > T2

1− g(y1, y2) +K2 if C(p) ≤ T2
(13)

Parameter K1 in (11) is a positive constant that penalizes choosing
a single layer at pixels where stereo matching produced two depth
estimates, while (12) penalizes assigning two planes with very sim-
ilar induced depths y1 and y2 to a pixel. In (13), K2 is another pos-
itive constant that penalizes assigning two depths to pixels which
have low contrast in the image, i.e., where the intensity gradient
magnitude measured by the function C(p) is smaller than a thresh-
old T2 (set to 0.03 for color values in the interval (0, 1)). Both
constants K1 and K2 are set to 1.0 in our implementation. The
function g(z, y) = h(|y − z|/z, T1) measures the approximation
error between the depth z and the plane-induced depth y, where

h(x, T1) =


0 if x ≤ 0,
1 if x ≥ T1

(1− (1− (x/T1))2)3 if 0 ≤ x ≤ T1

(14)

and the robustness parameter T1 is set to 0.1 in all our experiments.
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Figure 6: Experimental results for the (a) GLASS CASE, (b) STATUE, (c) GALLERY, (d) TABLE, and (e) CAR image sequences. From left to
right we see a sample input image, its front and rear layer decompositions I0 and I1, and the reflectivity map β. Please see the text for a
discussion of these results, zoom in to get a closer look at the image details, and see the video to see the resulting image-based renderings.


