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Abstract

Augmented/mixed reality and robotic applications are

increasingly relying on cloud-based localization services,

which require users to upload query images to perform cam-

era pose estimation on a server. This raises significant pri-

vacy concerns when consumers use such services in their

homes or in confidential industrial settings. Even if only

image features are uploaded, the privacy concerns remain

as the images can be reconstructed fairly well from feature

locations and descriptors. We propose to conceal the con-

tent of the query images from an adversary on the server

or a man-in-the-middle intruder. The key insight is to re-

place the 2D image feature points in the query image with

randomly oriented 2D lines passing through their original

2D positions. It will be shown that this feature represen-

tation hides the image contents, and thereby protects user

privacy, yet still provides sufficient geometric constraints to

enable robust and accurate 6-DOF camera pose estimation

from feature correspondences. Our proposed method can

handle single- and multi-image queries as well as exploit

additional information about known structure, gravity, and

scale. Numerous experiments demonstrate the high practi-

cal relevance of our approach.

1. Introduction

Estimating the 6-DOF camera pose from an image is a

fundamental problem in computer vision. It is crucial for

localization and navigation tasks in augmented/mixed re-

ality (AR/MR) and robotics. Structure-based camera pose

estimation methods are now quite mature [28,38,40,54,79]

and deployed in many products (e.g., Microsoft HoloLens,

Windows MR Headsets, Magic Leap One, Oculus Quest,

Google Maps AR). These methods first match local feature

points in a query image to a pre-computed 3D point cloud

of the scene. Each 2D–3D point correspondence provides

two geometric constraints for estimating camera pose.

Recently, Pittaluga et al. [46] showed that sparse 3D

point clouds and descriptors can be inverted to synthesize

detailed and recognizable images of the scene. Their work

emphasizes the inherent privacy risks associated with the

persistent storage and sharing of 3D point clouds models.

Speciale et al. [60] proposed the first solution to address

this problem by developing a privacy preserving camera

pose estimation technique. They propose to transform 3D

point clouds to 3D line clouds in a way that obfuscates the

(a) Query Image (b) 2D Feature Points (c) 2D Feature Lines

Figure 1: Main Idea. Replace each 2D feature point in the query

image with a randomly oriented 2D feature line passing through it.

scene geometry while retaining sufficient constraints for ro-

bust and accurate camera pose estimation in many settings.

Their representation [60] thus makes it possible to share

maps with client devices without compromising privacy and

enables privacy preserving localization on a local device.

Alternatively, learning-based methods [13, 30, 71, 73] par-

tially avoid the privacy issues associated with sharing con-

fidential 3D point clouds, as they do not explicitly store 3D

models. However, model inversion [41] poses privacy risks

even for these methods and they are still not efficient and

accurate enough [55, 71] for deployment in products.

Recently launched commercial cloud-based localization

services such as Microsoft Azure Spatial Anchors [12],

Google Visual Positioning System [2], 6D.AI [1], and

Scape Technologies [3] require mobile devices to upload

images or features to a server. A prominent example is the

Google Maps AR navigation feature [23], which combines

GPS- and VPS-based localization and has already been de-

ployed in 93 countries. Protecting the privacy of the map is

less critical for such services as the map data remains on the

server. However, uploading the query images or features to

a server poses serious privacy risks to the user, because the

images could reveal confidential information in the scene to

an adversary on the server or a man-in-the-middle attacker.

As localization might be running in the background

without users being consciously aware, the privacy impli-

cations are relevant for all kinds of users, ranging from en-

terprise users keen to avoid confidential corporate informa-

tion from accidentally leaking to third parties to home users

who want images from their home to remain private. These

privacy risks are present even when sending only local im-

age features instead of the full image, as the adversary can

easily reconstruct the original image using feature inversion

methods [16, 17]. Note that, for server-side localization,

Speciale et al.’s work [60] and learning-based approaches

cannot protect the user’s privacy as they are unable to con-

ceal the uploaded images or features on the server.
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In this paper, we propose a new privacy preserving visual

localization approach that involves transforming the query

image features before sending them to the server. The pro-

posed transformation prevents an adversary from recover-

ing the image appearance and recognizing confidential in-

formation in the scene. This is the first solution and a cru-

cial step towards mitigating privacy risks in cloud-based lo-

calization services. It enables their use without the risk of

man-in-the-middle attacks or having to trust the server.

Our solution is inspired by the transformation proposed

by Speciale et al. [60]. While they transform 3D points in

the map to 3D lines, we propose to replace 2D points in

the query image with 2D lines. Specifically, each randomly

oriented 2D line passes through the original 2D point which

is subsequently discarded (see Fig. 1 for an example). Our

proposed pose estimation approach requires uploading only

the 2D lines and associated feature descriptors to the server.

2D feature locations are unavailable on the server, making

it infeasible to invert the features. We show how to robustly

and efficiently estimate the 6-DOF camera pose with respect

to a 3D point cloud model given 2D line to 3D point corre-

spondences. Our obfuscation method leads to different ge-

ometric constraints from the prior work [60]. In our work,

we exploit the fact that 2D image lines back-project to 3D

planes which must contain their corresponding 3D points.

Furthermore, we consider another case where both the

query and the map are confidential. As such, we enable lo-

calization to be performed by a third party without allowing

it to gain confidential information from either the query im-

age or the pre-computed 3D point cloud of the scene.

Contributions. In summary, this paper: (1) considers a new

variant of privacy preserving visual localization which is

relevant for server-side localization and preserves the pri-

vacy of the user’s query images; (2) it involves transform-

ing 2D feature points to 2D lines in the image, while re-

taining sufficient geometric constraints for 6-DOF camera

pose estimation; (3) the transformation prevents inversion

of 2D features and thus conceals the image contents; (4) we

present a method to conceal both the query and the map; (5)

we implement, evaluate and study several variants of these

problems involving a single input image or multiple images,

with and without known structure in the query, the knowl-

edge of the vertical direction, or the scale of the scene.

2. Related Work

We now discuss relevant work on feature inversion, vi-

sual localization, and privacy preserving vision.

Reconstructing Images from Features. Weinzaepfel et

al. [72] were the first to invert SIFT features. Subse-

quently, others tried inverting and interpreting HOG fea-

tures [70], bag of visual words features [29], and CNN fea-

tures [41, 77, 78]. Dosovitskiy and Brox trained CNN ar-

chitectures to efficiently invert image features [16,17]. Pit-

taluga et al. [46] recently used similar CNN models to invert

sparse SfM point clouds and descriptors, where they empha-

sized the privacy risks of storing such data permanently.

Visual Localization and Camera Pose Estimation. Re-

cent progress in image-based localization techniques have

led to methods that are robust to changes in scene appear-

ance and illumination [7, 57], scalable [36, 53, 54, 79], and

efficient [9, 15, 18, 28, 30, 36–38, 69]. Most localization

approaches first recover putative matches between query

image features and features associated with 3D structure.

Then, the camera pose is typically estimated using minimal

solvers within a RANSAC-based robust estimation frame-

work. Often, the camera pose is computed from 2D point

to 3D point matches by solving a perspective-n-point (PnP)

problem [20]. Various solvers for the minimal case of 3

points (P3P) are known [20, 24] for central cameras and

specialized solvers have been proposed for the known ver-

tical direction case [34]. Nister and Stewenius [43] pro-

posed minimal solvers for generalized cameras, whereas

Sweeney et al. [64] dealt with unknown scale. Meanwhile,

structure-less pose estimation methods are based on 2D to

2D point matches between the query image and the mapped

images [82], while hybrid methods [14] are based on both

2D–2D and 2D–3D point matches. Generally, camera pose

estimation is not limited to point-based features only. For

example, the Perspective-N-Line (PNL) problem uses 2D

line to 3D line correspondences [48, 75, 80]. In contrast,

Speciale et al. [60] exploit 2D point to 3D line correspon-

dence for camera pose estimation in a variety of settings.

The resulting problems are solved using well known gener-

alized camera pose estimation algorithms [35,43,61,62,64].

3D Point-to-Plane Registration. 3D geometric registra-

tion problems can be solved using various techniques rang-

ing from iterative closest point (ICP) to optimal meth-

ods for registration of 3D points, lines, and planes [44].

ICP variants for point-to-plane registration have also been

proposed [39, 45]. However, more efficient methods are

known for the case of known point to plane correspon-

dences [31, 49, 50]. Ramalingam et al. [49, 50] proposed

minimal solvers for registering points to planes that re-

quire six correspondences. These have been used for point-

plane SLAM using RGB-D sensors [65]. In most previous

work [31,50,65], the planes arise from planar surfaces in the

scene or sometimes from other geometric primitives [49].

However, while our method uses a point-to-plane solver,

the planes in our method are virtual in the sense that they

are obtained by back-projection of randomly oriented 2D

image lines.

Privacy Preserving Visual Recognition. Avidan and But-

man [10, 11] were one of the first to study privacy-aware

techniques for computer vision for the face detection task.



 (a) Query Image (b) Inversion (all features) (c) Inversion (only revealed features)

Figure 2: Feature Inversion Attack. Shown from left to right are

a) the original query image, the image reconstructed b) using all

the SIFT descriptors and c) using only the descriptors whose 2D

positions are revealed during our pose estimation method. Notice,

how people present in the scene are quite well concealed.

Similar approaches were explored for image retrieval [59],

face recognition [19], video surveillance [67], biometric

verification [68], and detecting computer screens in first-

person video [33]. Recent works on privacy in vision in-

clude anonymization for activity recognition [51,52], learn-

ing models on private or encrypted data [4, 22, 76] and

localizing objects within indoor scenes using active cam-

eras [81]. However, these privacy preserving vision algo-

rithms focus on recognition tasks and cannot be used for

geometric vision problems such as camera pose estimation.

Privacy Preserving Localization in Mobile Systems. Ef-

ficient privacy preserving approaches for localizing smart-

phones in GPS-denied indoor scenes applicable to WiFi

and cellular fingerprinting as well as cloud-based services

have been developed [32]. Other anonymization approaches

for location privacy for mobile systems have been ex-

plored [5, 6, 8, 21, 42]. However, these approaches are not

suitable for precise pose estimation or other geometric vi-

sion problems. One crucial difference with our work is that

these approaches are geared towards concealing the user’s

location whereas our approach focuses on concealing the

appearance of the query images. Concealing the computed

camera pose, i.e., the user location on the server, is an inter-

esting open problem that is out of the scope of this paper.

3. Proposed Method

This section first introduces the key concepts behind our

privacy preserving method before discussing the case of lo-

calizing a single query image. We then extend this theory

to jointly localizing multiple image queries and present an

additional solution to the scenario where both the query and

the map remain confidential. We also present solutions to

several practical special cases, including known gravity di-

rection and the case where we can obtain a local reconstruc-

tion of the scene with known or unknown scale.

3.1. Privacy Preserving Localization System

Our privacy preserving localization approach relies on a

client-server architecture, where the client first extracts lo-

cal 2D features from the query image (e.g., SIFT [39]) and

then sends them to the server for computing the camera pose

w.r.t. a pre-computed 3D point cloud. The server takes the

2D image features from the client and matches them against

the associated features of the 3D point cloud. The result-

ing 2D to 3D correspondences then provide constraints for

camera pose estimation. Our approach is based on the same

general architecture. However, it relies on a novel privacy

preserving representation of the 2D feature points, which

lead to different geometric constraints for pose estimation.

The main underlying idea is to obfuscate the 2D features

extracted from the query image before sending them to the

server. Opposed to actively detecting and masking poten-

tially confidential objects (which can be error-prone), our

method inherently conceals the whole image by transform-

ing all the 2D feature points to randomly oriented 2D lines

passing through the original point. The 2D line representa-

tion provides a single geometric constraint for accurate and

efficient camera pose estimation. During the pose estima-

tion procedure, the original 2D feature point locations of

permanent scene structures will be revealed, whereas any

confidential transient objects remain concealed. Note that

revealing the permanent structures during pose estimation

does not compromise privacy, because such structures are

already present in the 3D map. An example of what is re-

vealed is shown in Fig. 2. Furthermore, without possession

of the 3D point cloud, all features remain concealed and no

information about the image can be inferred. The latter is

an effective defense against man-in-the-middle attacks that

intercept the client-server connection.

3.1.1 Privacy Preserving Single-Image Queries

Our major contribution is inspired by Speciale et al. [60],

who transform the 3D point cloud to a privacy preserving

3D line cloud. In the following, we adopt their notation and

denote the normalized positions of the local 2D features in

the query image as x ∈ R
2 and their corresponding 3D

points in the map as X ∈ R
3. Equivalent to their approach,

we assume known intrinsic camera parameters and rely on

sparse 3D point clouds. The traditional approach, which is

not privacy preserving, leverages 2D–3D point correspon-

dences to derive the 6-DOF camera pose P =
[

R T
]

with R ∈ SO(3) and T ∈ R
3 based on the constraint

0 = x̄− PX̄ = λ

[

x

1

]

− PX̄ , (1)

where x̄ ∈ P
2 and X̄ ∈ P

3 are the homogeneous rep-

resentations of x and X in projective space, respectively.

To account for outlier correspondences, this equation sys-

tem is usually robustly solved for an initial estimate of P

using minimal solvers like p3P [24] embedded in a variant

of RANSAC [20]. A refined solution is then obtained by
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Figure 3: Absolute Camera Pose Estimation. Left: using traditional 2D point to 3D point matches. Middle: using privacy preserving

3D line cloud representation [60]. Right: using our proposed privacy preserving 2D feature lines.

optimizing the following non-linear least-squares problem

P
∗ = argmin

P

‖x̄− PX̄‖2 (2)

formulated over the set of inliers from RANSAC.

As already noticed by Speciale et al. [60], such an ap-

proach reveals the geometry of the scene stored in the 3D

point cloud. In order to conceal the 3D point cloud, they

transform the 3D points X of the map to randomly oriented

3D lines L ∈ P
5. In contrast, we address the issue of leak-

ing confidential image information through the 2D feature

points. We propose to lift the 2D points x ∈ R
2 to ran-

domly oriented 2D lines l ∈ P
2 in the image that pass

through the original points such that lT x̄ = 0. Since the

original 2D feature positions are completely discarded and

can be anywhere along the random lines, this representa-

tion obfuscates their layout in the query image. While this

completely hides the image information, we will show that

2D line to 3D point correspondences still provide sufficient

geometric constraints for camera pose estimation.

In our case, the lifted 2D lines lie in the image plane

and do not represent rays in 3D space (see Fig. 3). In-

stead, their back-projection to 3D space defines a 3D plane

Π = P
T
l ∈ P

3 passing through the camera projection

center and the 2D line in the image. Observe that, for an op-

timal pose P , these back-projected 3D planes should con-

tain their corresponding 3D points in the map. This observa-

tion can be formulated in the following geometric constraint

0 = Π
T
X̄ = (P T

l)T X̄ = l
T
PX̄ , (3)

which can be used for camera pose estimation. This geo-

metric problem is equivalent to the 3D point to 3D plane

registration problem. Therefore, we can leverage existing

minimal solvers [49,50] for solving the equation system in-

side RANSAC. The solution to the problem requires a min-

imum of six 3D plane (back-projected 2D line) to 3D point

correspondences and so we denote the problem as l6P.

The discussed minimal solution optimizes a 3D point-to-

plane distance and produces an initial estimate of the cam-

era pose. In a second step, we aim to refine this initial so-

lution in order to obtain a more accurate result. Towards

this goal, we interpret the geometric problem in a differ-

ent way, such that we can formulate the error in 2D image

space. Concretely, the projection of a 3D point must always

be close to its corresponding 2D line in the image plane,

independent of the 2D line orientation. The geometric con-

straint in Eq. (3) can be simply reinterpreted as

0 = l
T
x̄ = l

T
PX̄ , (4)

where we first project the 3D point X to image space. By

minimizing the 2D point to 2D line distance in the image

using non-linear least squares optimization of

P
∗ = argmin

P

l
T

[

x

1

]

√

l21 + l22
with l =

[

l1 l2 l3
]T

, (5)

we obtain the final camera pose estimate. After deriving the

theory for single-image localization, we next generalize our

approach to the joint localization of multiple images.

3.1.2 Generalization to Multi-Image Queries

The joint localization of multiple images, if their relative

pose P c is known through rigid mounting or local track-

ing, brings great benefits in terms of recall and accuracy

in image-based localization [60]. Instead of determining a

separate pose P for each camera, we can reparameterize the

pose of multiple images jointly as

P = P c Pm with Pm = sm

[

Rm Tm

0 s−1
m

]

. (6)

Thus, we can estimate only a single transformation Pm ∈
Sim(3), while the known relative poses P c =

[

Rc T c

]

of the individual cameras are fixed. Note that, if we know

the relative scale of P c w.r.t. the 3D points X in the map,

we can drop the scale sm ∈ R
+ and simplify Pm to

SE(3). The extension of Eq. (3) to multiple cameras is then

straightforward by substituting P by P c Pm such that

0 = l
T
PX̄ = l

T
P c PmX̄ = Π

T

c
X̄m , (7)

where Πc = P c
T
l ∈ P

3 and X̄m = PmX̄ ∈ P
3. While

the 3D planes Π in Eq. (3) all pass through the projection
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Figure 4: Pose Estimation with Known Structure. Left: traditional setup with 3D point cloud maps. Middle: our proposed approach us-

ing 3D line cloud query and the 3D map point cloud. Right: our extended proposed approach using 3D line cloud for both queries and map.

center of a single camera, we now have multiple bundles

of planes Πc passing through the respective projection cen-

ters of their cameras. The minimal solution to this problem

can leverage the same solvers [49,50] as in the single-image

query scenario and we denote the problem as m-l6P. Sim-

ilarly, Eq. (5) still serves as our constraint for non-linear

refinement of the minimal solution.

3.1.3 Pose Estimation with Known Structure

Equivalent to Speciale et al. [60], we also propose a solution

to the scenario, where we can determine 3D structure in

the query image, e.g., through multi-view triangulation or

an active depth sensor. In other words, we now know the

depth λ of an image observation x, i.e., the 3D structure

in the query image can be computed as X̃ = λx̄. In the

traditional localization problem, the camera pose can then

be estimated as the 3D transformation that best aligns the

two corresponding 3D point sets using the constraint

0 = X̃ − PX̄ . (8)

This equation system has a direct and efficient solution [27,

66], which we denote as m-P3P+λ in the case of unknown

scale and as m-P3P+λ+s in the case of known scale.

In contrast to Speciale et al. [60], we want to hide the 3D

structure of the query instead of the map. We therefore lift

the 3D points X̃ of the query to randomly oriented 3D lines

in Plücker coordinates [47] as L̃ =
[

ṽ w̃
]T

∈ P
5 with

w̃ = X̃ × ṽ, leading to the new geometric constraints

0 = (ṽ × w̃ + βṽ)− PX̄ , (9)

which we can exploited for camera pose estimation. It turns

out that this problem can be solved using existing minimal

solutions, and it is geometrically equivalent to the general-

ized absolute pose problem with known [25] and unknown

scale [64]. We denote the minimal problems as m-L3P+λ+s

for known scale and m-L4P+λ for unknown scale.

3.1.4 Confidential Query and Confidential Map

Both Speciale et al. [60] and this paper so far only described

techniques to protect the confidentiality of either the query

or the map. In this section, we address this limitation by

deriving an approach that obfuscates both the query and the

map simultaneously, yet still allows for camera pose estima-

tion. This enables localization where both the query images

as well as the pre-computed maps contain confidential ob-

jects, enabling localization to be performed by an untrusted

third party without leaking information.

In order to solve this problem, we obfuscate both the

query and the map representation. Note that this only works

when we have known structure on the query side, because

solving the problem without known structure relies on lift-

ing 2D points to 2D lines. However, correspondences be-

tween 3D planes (back-projected 2D lines) in the query with

their corresponding 3D lines in the map do not provide geo-

metric constraints for camera pose estimation, as they gen-

erally always intersect, independent of their alignment.

To protect query and map information, we lift the 3D

points X̃ of the query and X of the map to 3D lines L̃ and

L, respectively. The resulting constraints are then

0 = (ṽ × w̃ + βṽ)− P

[

v ×w + αv

1

]

, (10)

which can be interpreted as a 3D line to 3D line intersection

problem. It turns out that this scenario is yet again geomet-

rically equivalent to the generalized relative pose problem.

Each 3D line in our case can be represented with a separate

camera ray in the relative pose estimation setting. As such,

we can rely on existing minimal solvers [61] for finding an

initial estimate of the camera pose inside RANSAC.

The non-linear refinement of the initial pose is more dif-

ficult, as we cannot easily compute an error in image space

anymore. The reason being that we neither know the orig-

inal 2D point location in the image nor the corresponding

original 3D point location in the map. Minimizing the re-

projection error in image space is, however, required in or-

der to find the maximum likelihood estimate under the as-

sumption that the image observations x ∼ N (0,σx) have

Gaussian distributed errors. We transform the 3D line L̃

of the query to the map coordinate system using the current

pose estimate as [L̇]× = P
−1
m

[L̃]×P
−T

m
. Assuming that the

3D map is error-free, we can find the maximum likelihood

estimate Ẋ of the true 3D point location of X by finding



Constraints Query Type POINT TO POINT (Traditional) LINE TO POINT (Proposed)

2D – 3D
Single-Image p3P [24] p2P+u [62] l6P [49] l4P+u [49]

Multi-Image m-p3P [25] m-p2P+u [27] m-l6P [49] m-l4P+u [49]

3D – 3D Multi-Image
m-P3P+λ [66] m-P2P+λ+u [66] m-L4P+λ [64] m-L3P+λ+u [14]

m-P3P+λ+s [27] m-P2P+λ+u+s [27] m-L3P+λ+s [25] m-L2P+λ+u+s [62]

LINE TO LINE (Proposed)

3D– 3D Multi-Image m-P3P+λ+s [27] m-P2P+λ+u+s [27] m-L6L+λ+s [61] m-L4L+λ+u+s [63]

Table 1: Camera Pose Problems. Traditional methods using point to point correspondences are called p*P (2D to 3D) and P*P (3D to

3D), whereas the ones using lines to points are called l*P (2D to 3D) and L*P (3D to 3D). We also refer as L*L (3D to 3D) to the case

where map and query images are both obfuscated with lines. In the first row, the methods take single query images as input, whereas the

rest of the methods jointly localize multiple query images (prefix m). These methods include general solvers as well specialized ones for

known vertical direction (suffix +u). The methods in the last three rows exploit known 3D structure estimated from multiple query images

(suffix +λ for known structure and suffix +s for known scale).
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Lmap .
X

l1
~

.
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Figure 5: LnL Methods. After computing the camera pose esti-

mation P , we need to find the closest point Ẋ on the 3D line L

of the map in order to compute a 2D geometric error.

the closest point of transformed line L̇ on the 3D line L in

the map coordinate system, as it is illustrated in Fig. 5.

Using the determined 3D point location Ẋ , we can com-

pute the geometric error between the two 3D lines in image

space by projecting both Ẋ and L̇ to the respective cameras

from which the query lines l̃ are observed. Concretely, we

non-linearly optimize the cost function

P
∗ = argmin

P

l̃
T

PẊ
√

l̃21 + l̃22

with [l̃]× = P c[L̃]×P
T

c
, (11)

where [l̃]× and [L̃]× are defined as

[l̃]× =

[

0 −l̃3 l̃2

l̃3 0 −l̃1

−l̃2 l̃1 0

]

, [L̃]× =

[

−[w̃]× −ṽ

ṽ
T 0

]

. (12)

The geometric error between the projected confidential 3D

line L̃ and the projected 3D point Ẋ can be differentiated

analytically w.r.t. P and its minimization thus efficiently

yields the final camera pose. We denote the solution to the

privacy preserving query and map problem as m-L6L+λ+s,

as it requires a minimum of six 3D line to 3D line corre-

spondences with known structure and scale. Note that we

do not consider the case with unknown scale, because we

are not aware of a minimal solution to the generalized rela-

tive pose problem with unknown scale.

3.1.5 Specialization with Known Vertical

Often, an estimate of the gravity direction in both the ref-

erence frame of the query and the map is available through

means of an inertial measurement unit or vanishing point

detection in the images. By pre-aligning the two reference

frames to the same vertical direction, one can reduce the

number of rotational pose parameters from three to one.

The parameterization of the rotation then simplifies to a sin-

gle quadratic constraint, leading to more efficient and nu-

merically stable solutions. Furthermore, the minimal so-

lutions require fewer correspondences and thus result in a

better runtime of RANSAC. We implement the known grav-

ity setting for all described problems, indicated by the suf-

fix +u. See Table 1 for an overview of all the methods.

4. Experimental Evaluation

4.1. Setup

Datasets. For evaluating the different specializations

(known structure, scale, and gravity) of our proposed

solvers, we use 15 real-world datasets [60] of complex

indoor and outdoor scenes captured using a mix of mo-

bile phones and the Microsoft HoloLens [26]. In the 15

datasets, there are a total of 375 single-image and 402

multi-image queries for evaluation, evenly spread across

the scenes. In addition, we also evaluate our unconstrained

single-image approach (p3P and l3P) on four large-scale In-

ternet photo collection datasets [37, 74], which are well-

established benchmarks in the community. For sparse

3D scene reconstruction, we rely on the COLMAP SfM

pipeline [56, 58]. For a fair comparison, all methods use

exactly the same 2D–3D correspondences, thresholds, and

RANSAC implementation [20]. See supplementary mate-

rial for more details and visualizations.

Metrics. We compute the rotational and translational errors

as ∆R = arccos Tr(RT
R̂)−1
2 and ∆T = ‖RT

T − R̂
T

T̂ ‖2.

In the supplementary material, we also report the aver-

age point-to-point and line-to-point reprojection errors (c.f .



(a) Rotation Error [deg] (b) Translation Error [cm]

S
in

g
le

-I
m

a
g

e

(2
D

 -
 3

D
)

M
u

lt
i-

Im
a
g
e

(2
D

 -
 3

D
)

M
u

lt
i-

Im
a
g
e

(3
D

 -
 3

D
)

M
u

lt
i-

Im
a
g
e

(3
D

 -
 3

D
)

Figure 6: Results for Privacy Preserving Image Query. Cumulative rotation and translation error histograms for all 16 evaluated meth-

ods. Privacy preserving method yields achieve almost as accurate results as the traditional approach, especially after non-linear refinement.

Eq. (2) and (5)) in addition to other details on runtime, etc.

Methods. We compare all our proposed privacy preserving

to their corresponding variants of traditional pose estima-

tors, see Table 1. The initial pose estimates of all meth-

ods are computed using standard RANSAC and a mini-

mal solver for the geometric constraints. The initial results

are then further refined (suffix +ref ) using a Levenberg-

Marquardt optimization of the cost functions in Eqs. (5) and

(11) based on the inliers from RANSAC.

4.2. Results

Mobile and HoloLens Datasets. Fig. 6 shows detailed ac-

curacy and recall statistics, where our proposed privacy pre-

serving method achieves almost as accurate results as the

traditional approach, despite leveraging a single instead of

two geometric constraints per correspondence. In absolute

terms, both the traditional as well as our approach achieve

state-of-the-art results, sufficient to enable precise localiza-

tion in AR and robotics scenarios. Similar to Speciale et

al. [60], the localization results improve by incorporating

known information about structure, gravity, and scale.

Internet Photo Collections. We also report results on well-

known large-scale localization benchmarks crowd-sourced

from the Internet (see Fig. 7). Even though good perfor-

mance on these datasets is mainly determined by the perfor-

mance of correspondence search, this experiment demon-

strates the feasibility of privacy preserving single-image

Images: 5856 | Points: 2.6M | Queries: 975

Dubrovnik

Images: 1071 | Points: 0.3M | Queries: 354

Gendarmenmarkt

Images: 6859 | Points: 0.3M | Queries: 446

Trafalgar

Images: 1690 | Points: 0.7M | Queries: 699

Roman Forum

Datasets Rotation Error [deg]
0 1 2 3 4 5 6

Translation Error [cm]
0 2 4 6 8 10

Figure 7: Internet Photo Collection Dataset Results. Dataset

names [37, 74] and statistics on the left with corresponding local-

ization errors for single-image scenario as box plots to the right.

localization in large-scale outdoor environments. Our

approach consistently yields a median localization accu-

racy below 1◦ and 2cm, comparable to state-of-the-art ap-

proaches. Furthermore, our approach achieves the same re-

call as the traditional localization method.

Confidential Query and Map. The previous two para-

graphs discussed results for privacy preserving image

queries with a traditional 3D point cloud based map rep-

resentation. Fig. 8 also evaluates the scenario where both

the query and the map are confidential. Compared to ei-

ther concealing the query (see m-LnP in Fig. 6) or the map

(see m-PnL in [60]), this approach has slightly lower ac-

curacy. Nevertheless, it still produces accurate localization

results in absolute numbers, especially the refined solutions

and the more constrained scenario with known gravity.
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Figure 8: Privacy Preserving Image Query and Map Results. Cumulative rotation and translation error histograms with both concealed

query and the map show slightly lower compared to m-LnP or m-PnL, yet still competitive in absolute terms, especially for m-L4L+λ+u+s.

5. Discussion

We now discuss other insights and potential future work.

Feature Line Triangulation Attack. When sending multi-

ple queries from the same confidential scene to the server,

corresponding 2D feature lines in different views can po-

tentially be triangulated to a 3D point. Since 2D image

lines back-project to 3D planes, at least three non-coplanar

planes must intersect to yield a 3D point. This 3D point can

then be back-projected to the views to find the approximate

2D position of the original features in the images. Such an

attack could be exploited by an attacker on the server to ap-

ply feature inversion techniques in 2D or 3D [16, 17, 46] to

recover the appearance of confidential content. A common

expected scenario for our method is where the confidential

content is transient and moving (e.g., people in the scene).

This inherently ensures the above attack would not work

because the triangulation scheme is only valid for objects

which are stationary across different views. A more princi-

pled defense requires the user to never upload image feature

descriptors to the server. Instead, the server must send the

map descriptors to the client. The client then matches the

image features to the map features and only sends success-

fully matched 2D lines to the server. Using such an ap-

proach, the client cannot recover any information from the

map, as it does not have the 3D point coordinates. Also, the

server cannot infer anything from the query either, because

it does not have the image descriptors. Although this may

require a larger exchange of data (at least for the first query).

Alternately, the converse approach is also valid. The client

uploads only the descriptors to the server (without 2D lines

features), the server returns only successfully matched 3D

map features to the client (perhaps in 3D line format [60]);

and then, clients can perform localization locally. These

two-step protocols can be more secure than sending all the

descriptors and features at once.

Towards Concealing the User’s Location. So far, we fo-

cused on ensuring that the appearance of the query image

remains confidential. However, after successful pose esti-

mation, the precise location of the user w.r.t. the 3D point

cloud is revealed. If precise location information is a pri-

vacy concern for certain applications, it can be easily hid-

den from the server by only using multi-image queries with

known structure. In this case, the client only sends 3D

lines to the server without the corresponding relative camera

poses P c in the query. Note that the server can still perform

non-linear refinement but by generating its own virtual cam-

eras. By not having the actual cameras, the server cannot re-

cover the precise location of the user in the scene anymore.

However, an approximate user location is still known based

on knowing which 3D points were observed in the image.

Hiding the location completely is not the focus of this paper

and an interesting research direction.

Feature Line Intersection. Similar to the 3D line cloud

attack discussed in [60], our 2D feature lines could poten-

tially be intersected with each other to find the approximate

positions of the original 2D feature points. This can be

especially effective, if nearby feature descriptors were ex-

tracted from overlapping local patches. In this case, an at-

tacker can try to find similar descriptors with partial overlap

and only intersect their lines to reduce ambiguity. However,

such an attack can be easily mitigated by applying sparsifi-

cation [60] of the 2D features and ensuring that their image

patches do not overlap.

Compactness of Representation. The traditional approach

based on 2D feature points requires 2 floats to represent the

location of an image feature. By discretizing the line direc-

tions, we can represent random 2D lines using 1 float for

the distance to the origin and 1 byte for the orientation, if

using a finite set of 256 directions. Similarly, 3D lines can

be compactly represented by 2 floats and 1 byte [60].

6. Conclusion

This paper address privacy concerns associated with cur-

rent cloud-based visual localization services. In our sce-

nario, we protect user privacy by concealing image infor-

mation from the server. This is a fundamental step towards

enabling image-based localization services to be deployed

in a wide range of scenarios. For example, privacy pre-

serving methods are absolutely mandatory, if we aim to not

leak confidential corporate information or private details in

everyone’s home. Our approach is based on novel geomet-

ric constraints leading to efficient solutions to the camera

pose estimation problem. Experiments on a large variety

of datasets demonstrate robust and accurate results for our

method. Last but not least, with this work, we not only in-

tend to propose a practical solution to a novel problem, but

we also hope to increase privacy awareness in the commu-

nity and thereby encourage future work in this direction.
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beck, and D. Cremers. Image-based localization with spatial

LSTMs. In International Conference on Computer Vision

(ICCV), 2017. 1

[72] P. Weinzaepfel, H. Jégou, and P. Pérez. Reconstructing an
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