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Abstract

We present a scalable and incremental approach for creating interactive image-based
walkthroughs from a dynamically growing collection of photographs of a scene. Prior ap-
proaches, such as [16], perform a global scene reconstruction as they require the knowl-
edge of all the camera poses. These are recovered via batch processing involving pairwise
image matching and structure from motion (Sfm), on collections of photographs. Both
steps can become computational bottlenecks for large image collections. Instead of com-
puting a global reconstruction and all the camera poses, our system utilizes several partial
reconstructions, each of which is computed from only a small subset of overlapping im-
ages. These subsets are efficiently determined using a Bag of Words-based matching
technique. Our framework easily allows an incoming stream of new photographs to be
incrementally inserted into an existing reconstruction. We demonstrate that an image-
based rendering framework based on only partial scene reconstructions can be used to
navigate large collections containing thousands of images without sacrificing the naviga-
tion experience. As our system is designed for incremental construction from a stream
of photographs, it is well suited for processing the ever-growing photo collections.

1 Introduction
The increasing popularity of digital photography and online photo-sharing sites such as
Flickr is creating photo collections of landmarks and popular destinations around the world
that are growing by the day. These massive datasets are visually interesting as they often
capture a landmark site from a variety of viewpoints and in different illuminations and com-
positions. However, browsing such a massive unstructured photo collection can be difficult
without any cues that indicate the relationship between the images. This has motivated a
variety of approaches that try to organize photographs using geographical data, annotations,
tags, etc. [6, 11, 16]. Attempts were also made to provide interactive and intuitive means
of exploring photos and videos. The World-Wide Media Exchange (WWMX) [19] arranged
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images on an interactive 2D map, PhotoCompas [8] clustered images based on time and loca-
tion, Realityflythrough [7] explored video from camcorders instrumented with GPS and tilt
sensors, and Kadobayashi and Tanaka [5] presented an interface for retrieving images using
proximity to a virtual camera. Image-based walkthroughs which worked on the principles of
image based rendering and virtual view synthesis had also been created but from controlled
acquisition of imagery [1]. Aspen Movie Map allowed a user to take a virtual tour of the city
of Aspen, Colarado by registering images captured from a moving car onto an interactive
street map of the city. Google Street View and EveryScape provide panoramic views from
various positions along many streets in the world. In Photowalker [18], a user can manually
author a walkthrough of a scene by specifying transitions between pairs of images in a col-
lection. In these systems, location is obtained from GPS or is manually specified. Johansson
and Cipolla [4] developed a system where a user can take a photograph, upload it to a server
where it is compared to an image database to receive location information.

Recent advances in computer vision in robustly solving image matching and the recov-
ery of 3D structure and camera pose from images via structure from motion (Sfm), was
exploited by the system dubbed Photo-Tourism[16]. It created extremely effective virtual
3D walkthroughs of a scene from unstructured Internet photo collections of popular tourist
locations. The image correspondences and 3D camera poses recovered automatically by
this system[16], made it possible for users to interactively navigate images registered in 3D.
However, the underlying pipeline did not scale to large photo collections. Running times
reported in[17] varied from 11 hours for a 1K image dataset to > 50 days for 8000 images.
The primary computational bottlenecks were in the pairwise image matching step and the
subsequent incremental 3D reconstruction stage where multiple rounds of global non-linear
optimization referred to as bundle adjustment are performed. This is important since one of
the overall goal in this system is to recover a single globally consistent reconstruction of the
scene and all the cameras.

(a) (b) (c)

Figure 1: (a) An input image collection (b) Our interactive image navigation interface. (c)
One of the multiple partial reconstructions of the scene, computed from the images shown
in (b).

In this paper, we present a new system that generates interactive navigation of a photo-
collection similar to Photo-tourism[16]. Our system however does not require a global 3D
reconstruction of the scene and all the cameras. Rather, it relies only on partial local re-
constructions which are independently estimated from subsets of nearby overlapping images
and thereby allowing it to scale to large datasets.

In an image-based walkthrough, users primarily observe images or transition between
image pairs at any time. Rendering a realistic transition between an image pair via image
based rendering techniques [13] requires the knowledge of relative pose between the corre-
sponding cameras, a sparse 3D reconstruction of points observed by these two cameras and
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optionally a geometric reconstruction of the scene (required by advanced IBR techniques
such as [13]). Therefore, a global Sfm reconstruction would allow direct transitions between
any image pairs, as the relative pose of all pairs can be obtained from the global reconstruc-
tion. However, in practice only transitions between images whose views overlap tend to be
the most useful. Our system limits the possible images that one would view next to a small
set of proximal images whose views overlap with the current image. This is determined by
the size of the subset for which a partial reconstruction is estimated.

Our approach for detecting these image subsets builds upon a state of the art image based
retrieval technique [2, 9, 10, 14] which can efficiently retrieve duplicates or similar images
based on visual appearance. This approach can be made scalable and more efficient by the
use of inverted indices which map individual visual words to a list of images in which they
occur. This can be very useful because generally only a small percentage of the visual words
are present in an image. Each of the subsets are processed through a standard structure from
motion pipeline. Restricting the size of the image subsets and processing them independent
of each other reduces computation time and also makes it possible to exploit parallelism
during the reconstruction stage. We demonstrate the ability to scale to large datasets without
sacrificing much on the user’s navigation experience.

The pairwise image matching bottleneck is addressed in a novel way by the work of
[6], where iconic images are first recovered using a global scene descriptor (Gist features)
for clustering the images into small collections. Then the expensive pairwise matching is
applied within these small clusters to find the iconic image of each cluster as the image
having the greatest number of features in common with rest of the images. Each of the
iconic images are then verified with respect to its top n matches among the iconic images
recovered using a visual word vocabulary based search. Another recent approach [11] avoids
a globally consistent reconstruction of the scene in the context of robotic navigation to do
scalable localization and mapping (to enable appearance based navigation) of the scene.

One of the key assumptions made by most previous systems is that all images will be
available prior to processing, hence they are designed to process all the images in batch
mode. However, online photo collections of important landmarks are often growing con-
tinuously and this indicates the need for an efficient online system that can incrementally
insert new photographs into an existing reconstruction as they become available. Our in-
cremental reconstruction framework maintains the photographs as a graph whose topology
changes dynamically as new photographs become available. When a new image is success-
fully matched to existing photos in a pre-computed dataset, a new partial reconstruction is
potentially added.

Our system is mostly immune to the various difficulties in computing a full global re-
construction via an incremental Sfm reconstruction approach, in particular its sensitivity to
the choice of the initial image pair. We solve independent local Sfm problems and relax the
need for global consistency in our reconstructions and camera poses. Thus, we avoid the
catastrophic errors that occur when inaccuracies in camera pose estimation propagate and
get compounded further along the sequence as new images, whose views overlap with the
camera with erroneous pose, get added. This can lead to severe errors in large sections of a
reconstruction [16, 17].
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2 System Overview
Our system takes a set, (S), of uncalibrated images. The overall system can be broken up
into stages in which operations are performed on this set of images. The relevant information
required in the next stage, or for the incremental addition of images, is stored in the form of
a graph at each stage. The following is the summary of the various stages in our system:

• Obtaining Putative matches: Use Vocabulary based techniques, for every image i
∈S, toe f f icientlyandscalably f indtheseto f neighbours,Ni, as the images with similar-
ity in appearance with image i. Create a directed graph of images, G1, to store Ni for
each i. Also store the histogram representation of the visual words present in i in the
node corresponding to image i to allow easy comparison with a new incoming image
during incremental insertion.

• Geometric verification of the putative matches: Estimate pairwise epipolar geom-
etry to determine which images in Ni were viewing a common 3D structure as image
i, for every i ∈ S. The verified set of images are called verified neighbors of i, Vi. The
information about the verified neighbours is stored in the form of a directed graph of
images, G2.

• Calibrating each image with respect to its true neighbors: Use a Sfm system on
the set i∪Vi, for every i ∈ S, to find the parameters required for displaying images and
making a transition from one image to another in a virtual setting while navigating
though the scene. Store this information in the form of a directed graph of images, G3,
where every edge stores the parameters required for making a transition.

• Creating mirrored edges to improve connectivity: For every pair of images, add an
edge from i to j, if an edge from j to i is present in G3 and mark it as a mirrored edge.
Store this new graph as G4. While browsing the photo collection, the mirrored edges
are simulated using their corresponding true edges due to which they were created.
The set of images to which an edge go from the node corresponding to image i is
called as Registered neighbors of i, Ri.

• Addition of new images: Repeat the previous four steps for the new image while
updating the corresponding graphs at each stage. Also add the new image to the set S
to allow matching with images coming in future.

Figure 2: Overview of the system highlighting the process of insertion of a new image

The distribution of vertex degrees in graph G4 indicates how connected it is. Even though
the pairwise relations between the images are commutative, G1, G2 and G3 are represented as
directed graphs in order to bound the number of spatial verifications required and the number
of images on which Sfm is performed for an image in one round. Provided the above two
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points are true, it is safe to assume that under normal circumstances, a finite bound is put
on the time taken in performing Sfm on the set of images i ∪ Vi. This makes the time
complexity of creating graph G3 from G2 approximately linear in the number of images and
thus allowing it to scale to large number of images. Similarly, it is easy to see that creating
G2 from G1 is also linear in the number of images in set S. Once a vocabulary is determined,
then the representation of an image in the form a histogram of visual words depends upon
the number of visual words (which is bounded) and also on the number of features extracted
from every image (which is also bounded). Therefore, we need to do an O(N2) matching of
histograms of the images. These histograms are sparse in general. In such a scenario, the
determination of the top matches becomes O(N) with respect to the number of images under
consideration by the use of inverted indices of visual words as in [10].

Our visualization scheme allows the user to navigate the edges and nodes present in the
graph G4 in a virtual 3D world. Our visualization scheme is similar to that of [16] in terms of
using a single proxy plane for view interpolation, but better viewpoint interpolations can also
be computed using 3D geometric proxies, [13]. When the user is on a node corresponding to
an image i, we show i in the center along with images in Ri which are shown as wireframes
oriented in space in a way so as to provide a cue about the relationship among the images in
the set i∪Ri.

In the following sections, we describe our system in more detail.

3 Image Matching
Our goal is to recover for each image i, a partial scene reconstruction based on the currently
available images which were directly matched to i. The relative pose of all the cameras and a
sparse set of 3D points reconstructed from these images are represented in a local coordinate
system. Putative matches for any image can be easily computed by matching its features
with the features extracted from the rest of the images and ranking the images on the basis
of number of feature matched with the query image. Quantization of features, by the use of
visual word vocabularies, can be employed to speed up the process of matching the features.
This visual word vocabulary used for this can be created from the features of a representative
set of images of the whole dataset. As a result, an image can now be concisely represented
as a histogram of visual word frequency and thereby reducing the problem of comparing
images to comparing histograms. Alternatively, a Vocabulary tree based image search used
in [3] can also be employed to find the top matching images of a query image.

The Bag of visual word based model ignores the position of the features, and hence,
some of the features may get incorrectly matched based on appearance across images. If
two images are looking at the same portion of the scene, then the geometric model predicted
by the feature matches across the images is expected to accurately predict the position of
most of the matching features across the images. Thus, verification of a matching pair can
be done by examining the number of correct predictions the best geometric model, estimated
from the feature matches, is able to do. Alternatively, these false matching images can be
identified and removed by the Sfm system, i.e. creating G3 directly from G1, but we prefer to
run the Sfm system only on the verified matches of an image as indicated in G2. This saves
time in case the Sfm system does an exhaustive pairwise matching of images. Additionally,
it saves time for the bundle-adjustment step typically employed by Sfm systems to refine the
estimates and further reject non matching images. This pre-verification can also be used in
the identification of a good initial pair with respect to image i prior to applying Sfm on the
set i∪Vi. Specifying the initial pair for reconstruction as such increases the chance of image
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i getting registered by the Sfm system when it is run on Image i and its neighbours. The
following subsections give the implementation details:

3.1 Obtaining Putative Matches

As a first step towards identifying the verified neighbours of every image in S, we try to find
the images which are similar in appearance. For this we extract robust SIFT features from
all the images to apply a visual word vocabulary based image matching system. We used a
representative set of images of the monument to create a context specific vocabulary. The
SIFT features from these images were clustered using the Kmeans algorithm implemented
on GPU. Alternatively, to avoid the overhead of creating a vocabulary, we also used the
Vocabulary tree based image search used in [3] in some experiments. While creating the
histograms of the images, we used Term Frequency(tf) to normalize the difference in the
number of SIFT points extracted per image. We also used Inverse Document Frequency(idf)
to downplay the importance of commonly occurring words. We measure the similarity be-
tween two images on the basis the similarity of the histogram of the two images measured
using Cosine similarity distance function, used in many document retrieval techniques. The
top 10 matches according to this score are recored for each image in G1.

3.2 Geometric Verification

We do a refinement of the top matches returned for each image by the previous step to remove
spurious matches. To verify an image pair, we first estimate a Fundamental matrix using
RANSAC which can best explain the epipolar geometry of the matching features between
the images. The inliers with respect to this fundamental matrix are computed and if the
number of inliers is greater than some threshold (40 in our case), then the match is accepted.
These images can be sent per se to the Sfm system for Geometry computation where some
of the images may fail to get registered. The success of Geometry computation step depends
significantly upon the initial pair of matching images used for starting the calibration process.
The initial pair of images should have a good number of matching features and also have a
good baseline. To identify the suitable matching pair for the reconstruction, we score them
on the ratio of area which is covered by the inliers in each of the images as compared to the
total area of the images. The area covered by the inliers is computed as the area covered by
the convex hull enclosing all the inliers. The matching image which has the highest score
with respect the concerned image, along with the concerned image, is taken as one of images
in the initial pair for the reconstruction.

4 Generating Partial Reconstructions

After the spatial verification stage, we obtain a set of 2D correspondences within the set of
images i∪Vi. We now perform structure from motion on these images, to estimate a partial
metric reconstruction of cameras and 3D points. We use BUNDLER [15], a freely available
Sfm implementation that first generates an initialization for all cameras and points using an
incremental seed and grow approach and then performs several rounds of bundle adjustment
and outlier removal to refine the full camera calibration parameters and the sparse 3D points.
Note that these camera pose estimates are with respect to a local coordinate frame, selected
arbitrarily for each partial Sfm problem we solve. However, this is sufficient to recover the
relative pose between camera i and any of its immediate neighbors in Vi.
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The partial reconstruction corresponding to each image i is referred to as Pi. Pi comprises
of reconstructed cameras for the set of images i∪Vi and a set of 3D points visible in these
images. The relationship of any image i, with its registered neighbors Ri can be represented
in the form of a directed graph, G3, in which a directed edge is present from image i to every
image j ∈ Ri. Any such edge means that a transition from the source to the destination image
is possible while navigating the scene. Also, an edge from i to j can potentially be used to
create an edge from j to i if it is not present. This is done by using the Pi as a proxy for Pj
by centering Pi with respect to j while showing a transition for j to i. This makes the graph
used for navigating the scene, G4, undirected.

4.1 Image-based rendering framework
Our scene navigation scheme is inspired from the one used in the Phototourism system [16].
Initially, we show a 3D world corresponding to a partial reconstruction, Pi, of one of the
images, i. Images are displayed by using a best fit plane(computed using RANSAC) corre-
sponding of the points visible in the image as a proxy surface for projection. Initially, the
virtual camera is placed congruent to the camera parameters recovered for image i and image
i is projected on it proxy surface. Images in Ri are shown as wireframes of their correspond-
ing projections on their proxy planes. The user can point and click at any of the wireframes to
move to the partial reconstruction corresponding the a new image, j. This is done by show-
ing a transition within Pi during which the virtual camera moves from the camera parameters
corresponding to image i to the camera parameters corresponding to image j. Note that the
recovery of metric camera calibration allows the possibility of estimating dense depth maps
from the images, thus making it possible to use advanced image-based rendering techniques
such as [12] for generating better transitions between photographs. The transition is accom-
panied by showing a fading in of image j and corresponding fading out of image i. At the
end of the transition, we show the partial reconstruction Pj in the same way as described
above. Thus, the user is able to navigate the scene using partial reconstructions.

5 Results
We have tested our system on a large collection of 6000 photographs of a heritage site, which
we refer to as the FORT dataset. Some small subsets of this dataset which have been used

Figure 3: Descriptions of HILLTOP, GATE, COURTYARD and FORT datasets used in our
experiments. N shows the number of images and T shows the time taken by our system.
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in specific experiments are the 135 images of the GATE dataset, and the HILLTOP dataset
containing 114 images. We also tested the performance of our incremental system on the
COURTYARD dataset containing 687 images taken under different lighting conditions.

Figure 4: [left]Matches determined by our system from G2 for a sample image (shown in
blue) compared with its matches in Gm; [right]Comparison of the number of matches with
the manual graph by the two systems for the HILLTOP DATASET

5.1 Experiments
We run the first 2 stages of the pipeline on the HILLTOP dataset to determine whether our
system is able to robustly identify the correct neighbours of every image even when we are
considering the top n matches given by a non geometric test (recorded in G1) which are
further refined by a simple RANSAC based geometric test (recorded in G2). The vocabulary
used for creating G1 was created using a set of 1088 randomly sampled images of the whole
monument. We created an undirected match graph(Gm), to be used as a ground truth, by
manually comparing every image to every other image in the dataset. We also computed a
match graph(Gb), in a manner similar to [16] by running BUNDLER [15] individually on the
3 different clusters present in the dataset. Figure 4[right] reports the number of matches of
each image obtained from G2 and Gb when compared against the set of neighbours obtained
from Gm. Figure 4[left] shows an example image along with its matches obtained from G2
compared with matches obtained from Gb.

In another experiment, we simulated a scenario in which we initialize with a small set of
random images, and images arrive over time. For this we generate random permutations of
the images in the GATE dataset. We initialize our system from the first 50 images. We use the

Figure 5: Ui represents the number of unregistered images and Ci represents the size of
largest cluster for a set with i images; the figure shows that Ui converge to a small value and
Ci grows continuously indicating that more and more images get registered to form a single
cluster and the number of unregistered images decrease
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pre-trained vocabulary tree generated from large number of images from the internet which
was made available by [2] for computing G1 and incrementally add the rest of the 85 images.
This was repeated for other permutations. The images which do not have any neighbour in G4
are marked as unregistered images and the size of the largest cluster is also shown (Figure 5)
with the addition of each image. The graph G4 is very fragmented in the beginning, but as
more images get added, smaller disconnected components in the match graph get merged
resulting in a largest cluster size of 126, 127, 128 and 124 images respectively for the four
runs. The final match graph is well connected and provides a pleasant navigation experience.
In a similar experiment with the COURTYARD dataset, we were able to get a cluster of 674
images out of 687 images while initializing from 200 images. This shows the applicability
of our system on datasets of various sizes.

Figure 6: [left]Time taken in various stages of creating a walkthrough using our system as
compared to time required to do a global reconstruction using BUNDLER [15] on the same
set; [right] Graph comparing total time taken by the two systems.

In another experiment with the GATE dataset, we compare the time complexity of creating
a walkthrough using our system to that of time taken to run the Sfm system on the whole
dataset. We tested with sets of sizes 55 to 135 images with increments of 10 images. We use
the pre-trained vocabulary tree made available by [2] for computing G1. Time taken by our
system is reported as the time required for matching (G1), geometric verification (G2) and
creating partial scene reconstruction (G3) for each image. The results are shown in 6[left].

Figure 7: [left]Histogram showing the number of images of each degree in graph G4 for
the FORT dataset; [right] Table showing number of connected components of various sizes
present in G4 after running our system on the FORT dataset

In another experiment we demonstrate the scalability of our system on FORT dataset.
We computed the graph G1 of the set using the scene specific vocabulary created using a
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representative set of 1088 images from the FORT dataset. We report the degree of each image
in 7[left]. The average degree obtained per node is 7.1 for the registered images in graph G4
even when we consider only 10 matches per image in G1. The largest connected component
we obtain is of 4249 images and another cluster of 453 images. Thus, we demonstrate that a
good navigation experience can be built in a scalable fashion from our system as we are able
to obtain clusters of decent size with good connectivity on large datasets.

6 Conclusions
We demonstrated that it is possible to achieve an image based browsing experience com-
parable to the one generated by a full reconstruction even by employing several partial re-
constructions of a scene. The proposed approach is incremental, approximately linear in the
number of images and massively parallel at every stage and hence easily scalable to very
large image collections. The ability to incrementally grow our reconstruction makes it well
suited for browsing the ever growing photo collections.
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