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Abstract

We propose a new multi-frame method for efficiently
computing scene flow (dense depth and optical flow) and
camera ego-motion for a dynamic scene observed from a
moving stereo camera rig. Our technique also segments out
moving objects from the rigid scene. In our method, we first
estimate the disparity map and the 6-DOF camera motion
using stereo matching and visual odometry. We then iden-
tify regions inconsistent with the estimated camera motion
and compute per-pixel optical flow only at these regions.
This flow proposal is fused with the camera motion-based
flow proposal using fusion moves to obtain the final opti-
cal flow and motion segmentation. This unified framework
benefits all four tasks – stereo, optical flow, visual odome-
try and motion segmentation leading to overall higher ac-
curacy and efficiency. Our method is currently ranked third
on the KITTI 2015 scene flow benchmark. Furthermore, our
CPU implementation runs in 2-3 seconds per frame which
is 1-3 orders of magnitude faster than the top six methods.
We also report a thorough evaluation on challenging Sintel
sequences with fast camera and object motion, where our
method consistently outperforms OSF [30], which is cur-
rently ranked second on the KITTI benchmark.

1. Introduction
Scene flow refers to 3D flow or equivalently the dense

3D motion field of a scene [38]. It can be estimated from
video acquired with synchronized cameras from multiple
viewpoints [28, 29, 30, 43] or with RGB-D sensors [18, 20,
15, 33] and has applications in video analysis and editing,
3D mapping, autonomous driving [30] and mobile robotics.

Scene flow estimation builds upon two tasks central to
computer vision – stereo matching and optical flow estima-
tion. Even though many existing methods can already solve
these two tasks independently [24, 16, 35, 27, 17, 46, 9],
a naive combination of stereo and optical flow methods for
computing scene flow is unable to exploit inherent redun-
dancies in the two tasks or leverage additional scene in-
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(a) Left input frame (reference) (b) Zoom-in on stereo frames

(c) Ground truth disparity (d) Estimated disparity D

(e) Ground truth flow (f) Estimated flow F

(g) Ground truth segmentation (h) Estimated segmentation S
Figure 1. Our method estimates dense disparity and optical flow
from stereo pairs, which is equivalent to stereoscopic scene flow
estimation. The camera motion is simultaneously recovered and
allows moving objects to be explicitly segmented in our approach.

formation which may be available. Specifically, it is well
known that the optical flow between consecutive image
pairs for stationary (rigid) 3D points are constrained by their
depths and the associated 6-DOF motion of the camera rig.
However, this idea has not been fully exploited by existing
scene flow methods. Perhaps, this is due to the additional
complexity involved in simultaneously estimating camera
motion and detecting moving objects in the scene.

Recent renewed interest in stereoscopic scene flow esti-
mation has led to improved accuracy on challenging bench-
marks, which stems from better representations, priors, op-
timization objectives as well as the use of better optimiza-
tion methods [19, 45, 8, 30, 43, 28]. However, those state of
the art methods are computationally expensive which limits
their practical usage. In addition, other than a few excep-
tions [40], most existing scene flow methods process ev-
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Figure 2. Overview of the proposed method. In the first three steps, we estimate the disparity D and camera motion P using stereo matching
and visual odometry techniques. We then detect moving object regions by using the rigid flow Frig computed from D and P. Optical flow is
performed only for the detected regions, and the resulting non-rigid flow Fnon is fused with Frig to obtain final flow F and segmentation S.

ery two consecutive frames independently and cannot effi-
ciently propagate information across long sequences.

In this paper, we propose a new technique to estimate
scene flow from a multi-frame sequence acquired by a cal-
ibrated stereo camera on a moving rig. We simultaneously
compute dense disparity and optical flow maps on every
frame. In addition, the 6-DOF relative camera pose be-
tween consecutive frames is estimated along with a per-
pixel binary mask that indicates which pixels correspond
to either rigid or non-rigid independently moving objects
(see Fig. 1). Our sequential algorithm uses information only
from the past and present, thus useful for real-time systems.

We exploit the fact that even in dynamic scenes, many
observed pixels often correspond to static rigid surfaces.
Given disparity maps estimated from stereo images, we
robustly compute the 6-DOF camera motion using visual
odometry robust to outliers (moving objects in the scene).
Given the ego-motion estimate, we improve the depth es-
timates at occluded pixels via epipolar stereo matching.
Then, we identify image regions inconsistent with the cam-
era motion and compute an explicit optical flow proposal
for these regions. Finally, this flow proposal is fused with
the camera motion-based flow proposal using fusion moves
to obtain the final flow map and motion segmentation.

While these four tasks – stereo, optical flow, visual
odometry and motion segmentation have been extensively
studied, most of the existing methods solve these tasks in-
dependently. As our primary contribution, we present a
single unified framework where the solution to one task
benefits the other tasks. In contrast to some joint meth-
ods [43, 30, 28, 42] that try to optimize single complex
objective functions, we decompose the problem into sim-
pler optimization problems leading to increased computa-
tional efficiency. Our method is significantly faster than
top six methods on KITTI taking about 2–3 seconds per
frame (on the CPU), whereas state-of-the-art methods take
1–50 minutes per-frame [43, 30, 28, 42]. Not only is our
method faster but it also explicitly recovers the camera mo-
tion and motion segmentation. We now discuss how our
unified framework benefits each of the four individual tasks.

Optical Flow. Given known depth and camera motion,
the 2D flow for rigid 3D points which we refer to as rigid
flow in the paper, can be recovered more efficiently and
accurately compared to generic non-rigid flow. We still
need to compute non-rigid flow but only at pixels associated
with moving objects. This reduces redundant computation.
Furthermore, this representation is effective for occlusion.
Even when corresponding points are invisible in consecu-
tive frames, the rigid flow can be correctly computed as long
as the depth and camera motion estimates are correct.

Stereo. For rigid surfaces in the scene, our method
can recover more accurate disparities at pixels with left-
right stereo occlusions. This is because computing camera
motions over consecutive frames makes it possible to use
multi-view stereo matching on temporally adjacent stereo
frames in addition to the current frame pair.

Visual Odometry. Explicit motion segmentation makes
camera motion recovery more robust. In our method, the bi-
nary mask from the previous frame is used to predict which
pixels in the current frame are likely to be outliers and must
be downweighted during visual odometry estimation.

Motion Segmentation. This task is essentially solved
for free in our method. Since the final optimization per-
formed on each frame fuses rigid and non-rigid optical flow
proposals (using MRF fusion moves) the resulting binary
labeling indicates which pixels belong to non-rigid objects.

2. Related Work

Starting with the seminal work by Vedula et al. [38, 39],
the task of estimating scene flow from multiview image se-
quences has often been formulated as a variational prob-
lem [32, 31, 3, 45]. These problems were solved using dif-
ferent optimization methods – Pons et al. [32, 31] proposed
a solution based on level-sets for volumetric representations
whereas Basha et al. [3] proposed view-centric representa-
tions suiltable for occlusion reasoning and large motions.
Previously, Zhang et al. [47] studied how image segmenta-
tion cues can help recover accurate motion and depth dis-
continuities in multi-view scene flow.



Subsequently, the problem was studied in the binocular
stereo setting [26, 19, 45]. Huguet and Devernay [19] pro-
posed a variational method suitable for the two-view case
and Li and Sclaroff [26] proposed a multiscale approach
that incorporated uncertainty during coarse to fine process-
ing. Wedel et al. [45] proposed an efficient variational
method suitable for GPUs where scene flow recovery was
decoupled into two subtasks – disparity and optical flow es-
timation. Valgaerts et al. [36] proposed a variational method
that dealt with stereo cameras with unknown extrinsics.

Earlier works on scene flow were evaluated on sequences
from static cameras or cameras moving in relatively simple
scenes (see [30] for a detailed discussion). Cech et al. pro-
posed a seed-growing method for sterescopic scene flow [8]
which could handle realistic scenes with many moving ob-
jects captured by a moving stereo camera. The advent of the
KITTI benchmark led to further improvements in this field.
Vogel et al. [41, 42, 40, 43] recently explored a type of 3D
regularization – they proposed a model of dense depth and
3D motion vector fields in [41] and later proposed a piece-
wise rigid scene model (PRSM) in two [42] and multi-frame
settings [40, 43] that treats scenes as a collection of planar
segments undergoing rigid motions. While PRSM [43] is
the current top method on KITTI, its joint estimation of 3D
geometries, rigid motions and superpixel segmentation us-
ing discrete-continuous optimization is fairly complex and
computationally expensive. Lv et al. [28] recently proposed
a simplified approach to PRSM using continuous optimiza-
tion and fixed superpixels (named CSF), which is faster than
[43] but is still too slow for practical use.

As a closely related approach to ours, object scene flow
(OSF) [30] segments scenes into multiple rigidly-moving
objects based on fixed superpixels, where each object is
modeled as a set of planar segments. This model is more
rigidly regularized than PRSM. The inference by max-
product particle belief propagation is also very computa-
tionally expensive taking 50 minutes per frame. A faster
setting of their code takes 2 minutes but has lower accuracy.

A different line of work explored scene flow estimation
from RGB-D sequences [15, 33, 18, 20, 21, 44]. Mean-
while, deep convolutional neural network (CNN) based su-
pervised learning methods have shown promise [29].

3. Notations and Preliminaries
Before describing our method in details, we define nota-

tions and review basic concepts used in the paper.
We denote relative camera motion between two images

using matrices P = [R|t] ∈ R3×4, which transform homo-
geneous 3D points x̂ = (x, y, z, 1)T in camera coordinates
of the source image to 3D points x′ = Px̂ in camera coor-
dinates of the target image. For simplicity, we assume a rec-
tified calibrated stereo system. Therefore, the two cameras
have the same known camera intrinsics matrix K ∈ R3×3

and the left-to-right camera pose P01 = [I| − Bex] is also
known. Here, I is the identity rotation, ex = (1, 0, 0)T , and
B is the baseline between the left and right cameras.

We assume the input stereo image pairs have the same
size of image domains Ω ∈ Z2 where p = (u, v)T ∈ Ω is
a pixel coordinate. Disparity D, flow F and segmentation
S are defined as mappings on the image domain Ω, e.g.,
D(p) : Ω→ R+, F(p) : Ω→ R2 and S(p) : Ω→ {0, 1}.

Given relative camera motion P and a disparity map D
of the source image, pixels p of stationary surfaces in the
source image are warped to points p′ = w(p;D,P) in the
target image by the rigid transformation [14] as

w(p;D,P) = π

(
KP

[
K−1 0
0T (fB)−1

] [
p̂
D(p)

])
. (1)

Here, p̂ = (u, v, 1)T is the 2D homogeneous coordinate
of p, the function π(u, v, w) = (u/w, v/w)T returns 2D
non-homogeneous coordinates, and f is the focal length of
the cameras. This warping is also used to find which pixels
p in the source image are visible in the target image using
z-buffering based visibility test and whether p′ ∈ Ω.

4. Proposed Method
Let I0

t and I1
t , t ∈ {1, 2, · · · , N + 1} be the input im-

age sequences captured by the left and right cameras of a
calibrated stereo system, respectively. We sequentially pro-
cess the first to N -th frames and estimate their disparity
maps Dt, flow maps Ft, camera motions Pt and motion
segmentation masks St for the left (reference) images. We
call moving and stationary objects as foreground and back-
ground, respectively. Below we focus on processing the t-th
frame and omit the subscript t when it is not needed.

At a high level, our method is designed to implicitly min-
imize image residuals

E(Θ) =
∑
p

‖I0
t (p)− I0

t+1(w(p; Θ))‖ (2)

by estimating the parameters Θ of the warping function w

Θ = {D,P,S,Fnon}. (3)

The warping function is defined, in the form of the flow map
w(p; Θ) = p + F(p), using the binary segmentation S on
the reference image I0

t as follows.

F(p) =

{
Frig(p) if S(p) = background
Fnon(p) if S(p) = foreground (4)

Here, Frig(p) is the rigid flow computed from the disparity
mapD and the camera motion P using Eq. (1), and Fnon(p)
is the non-rigid flow defined non-parametrically. Directly
estimating this full model is computationally expensive. In-
stead, we start with a simpler rigid motion model computed



(a) Initial disparity map D̃ (b) Uncertainty map U [12]

(c) Occlusion mapO (d) Final disparity map D

Figure 3. Binocular and epipolar stereo. (a) Initial disparity map.
(c) Uncertainity map [12] (darker pixels are more confident).
(b) Occlusion map (black pixels are invisible in the right image).
(d) Final disparity estimate by epipolar stereo.

from the reduced model parameters Θ = {D,P} (Eq. (1)),
and then increase the complexity of the motion model by
adding non-rigid motion regions S and their flow Fnon. In-
stead of directly comparing pixel intensities, at various steps
of our method, we robustly evaluate the image residuals
‖I(p)− I ′(p′))‖ by truncated normalized cross-correlation

TNCCτ (p,p′) = min{1− NCC(p,p′), τ}. (5)

Here, NCC is normalized cross-correlation computed for
5× 5 grayscale image patches centered at I(p) and I ′(p′),
respectively. The thresholding value τ is set to 1.

In the following sections, we describe the proposed
pipeline of our method. We first estimate an initial disparity
map D̃ (Sec. 4.1). The disparity map D̃ is then used to esti-
mate the camera motion P using visual odometry recovery
(Sec. 4.2). This motion estimate P is used in the epipolar
stereo matching stage, where we improve the initial dispar-
ity to get the final disparity map D (Sec. 4.3). The D and
P estimates are used to compute a rigid flow proposal Frig

and recover an initial segmentation S̃ (Sec. 4.4). We then
estimate non-rigid flow proposal Fnon for only the moving
object regions of S̃ (Sec. 4.5). Finally we fuse the rigid and
non-rigid flow proposals {Frig,Fnon} and obtain the final
flow map F and segmentation S (Sec. 4.6). All the steps of
the proposed method are summarized in Fig. 2.

4.1. Binocular Stereo

Given left and right images I0 and I1, we first estimate
an initial disparity map D̃ of the left image and also its oc-
clusion map O and uncertainty map U [12]. We visualize
example estimates in Figs. 3 (a)–(c).

As a defacto standard method, we estimate disparity
maps by using semi-global matching (SGM) [16] with a
fixed disparity range of [0, 1, · · · , Dmax]. Our implemen-
tation of SGM uses 8 cardinal directions and NCC-based
matching costs of Eq. (5) for the data term. The occlusion

map O is obtained by left-right consistency check. The un-
certainty map U is computed during SGM as described in
[12] without any computational overhead. We also define a
fixed confidence threshold τu for U , i.e., D̃(p) is considered
unreliable if U(p) > τu. More details are provided in the
supplementary material.

4.2. Stereo Visual Odometry

Given the current and next image I0
t and I0

t+1 and the ini-
tial disparity map D̃t of I0

t , we estimate the relative camera
motion P between the current and next frame. Our method
extends an existing stereo visual odometry method [1]. This
is a direct method, i.e., it estimates the 6-DOF camera mo-
tion P by directly minimizing image intensity residuals

Evo(P) =
∑
p∈T

ωvo
p ρ
(
|I0
t (p)− I0

t+1(w(p; D̃t,P))|
)

(6)

for some target pixels p ∈ T , using the rigid warping w
of Eq. (1). To achieve robustness to outliers (e.g., by mov-
ing objects, occlusion, incorrect disparity), the residuals are
scored using the Tukey’s bi-weight [4] function denoted by
ρ. The energy Evo is minimized by iteratively re-weighted
least squares in the inverse compositional framework [2].

We have modified this method as follows. First, to ex-
ploit motion segmentation available in our method, we ad-
just the weights ωvo

p differently. They are set to either 0 or 1
based on the occlusion map O(p) but later downweighted
by 1/8, if p is predicted as a moving object point by the
previous mask St−1 and flow Ft−1. Second, to reduce sen-
sitivity of direct methods to initialization, we generate mul-
tiple diverse initializations for the optimizer and obtain mul-
tiple candidate solutions. We then choose the final estimate
P such that best minimizes weighted NCC-based residuals
E =

∑
p∈Ω ω

vo
p TNCCτ (p, w(p; D̃t,P)). For diverse ini-

tializations, we use (a) the identity motion, (b) the previous
motion Pt−1, (c) a motion estimate by feature-based corre-
spondences using [25], and (d) various forward translation
motions (about 16 candidates, used only for driving scenes).

4.3. Epipolar Stereo Refinement

As shown in Fig. 3 (a), the initial disparity map D̃ com-
puted from the current stereo pair {I0

t , I
1
t } can have errors

at pixels occluded in right image. To address this issue, we
use the multi-view epipolar stereo technique on temporar-
ily adjacent six images {I0

t−1, I
1
t−1, I

0
t , I

1
t , I

0
t+1, I

1
t+1} and

obtain the final disparity map D shown in Fig. 1 (d).
From the binocular stereo stage, we already have com-

puted a matching cost volume of I0
t for I1

t , which we de-
note as Cp(d), with some disparity range d ∈ [0, Dmax].
The goal here is to get a better cost volume Cepi

p (d) as in-
put to SGM, by blending Cp(d) with matching costs for
each of the four target images I ′ ∈ {I0

t−1, I
1
t−1, I

0
t+1, I

1
t+1}.



Since the relative camera poses of the current to next frame
Pt and previous to current frame Pt−1 are already es-
timated by the visual odometry in Sec. 4.2, the relative
poses from I0

t to each target image can be estimated as
P′ ∈ {P−1

t−1,P
01P−1

t−1,Pt,P
01Pt}, respectively. Recall

P01 is the known left-to-right camera pose. Then, for each
target image I ′, we compute matching costs C ′p(d) by pro-
jecting points (p, d)T in I0

t to its corresponding points in I ′

using the pose P′ and the rigid transformation of Eq. (1).
Since C ′p(d) may be unreliable due to moving objects, we
here lower the thresholding value τ of NCC in Eq. (5) to 1/4
for higher robustness. The four cost volumes are averaged
to obtain Cavr

p (d). We also truncate the left-right matching
costs Cp(d) at τ = 1/4 at occluded pixels known byO(p).

Finally, we compute the improved cost volume Cepi
p (d)

by linearly blending Cp(d) with Cavr
p (d) as

Cepi
p (d) = (1− αp)Cp(d) + αpC

avr
p (d), (7)

and run SGM with Cepi
p (d) to get the final disparity map D.

The blending weights αp ∈ [0, 1] are computed from the
uncertainty map U(p) (from Sec. 4.1) normalized as up =
min{U(p)/τu, 1} and then converted as follows.

αp(up) = max{up − τc, 0}/(1− τc). (8)

Here, τc is a confidence threshold. If up ≤ τc, we get
αp = 0 and thus Cepi

p = Cp. When up increases from
τc to 1, αp linearly increases from 0 to 1. Therefore, we
only need to compute Cavr

p (d) at p where up > τc, which
saves computation. We use τc = 0.1.

4.4. Initial Segmentation

During the initial segmentation step, the goal is to find
a binary segmentation S̃ in the reference image I0

t , which
shows where the rigid flow proposal Frig is inaccurate and
hence optical flow must be recomputed. Recall that Frig
is obtained from the estimated disparity map D and cam-
era motion P using Eq. (1). An example of S̃ is shown in
Fig. 4 (f). We now present the details.

First, we define binary variables sp ∈ {0, 1} as proxy
of S̃(p) where 1 and 0 correspond to foreground (moving
objects) and background, respectively. Our segmentation
energy Eseg(s) is defined as

Eseg =
∑
p∈Ω

[
Cncc

p +Cflo
p +Ccol

p +Cpri
p

]
s̄p +Epotts(s). (9)

Here, s̄p = 1− sp. The bracketed terms [ · ] are data terms
that encode the likelihoods for mask S̃, i.e., positive values
bias sp toward 1 (moving foreground). Epotts is the pairwise
smoothness term. We explain each term below.
Appearance term Cncc

p : This term finds moving objects
by checking image residuals of rigidly aligned images. We

(a) NCC-based residual map (b) Patch-intensity variance wvar
p

(c) Prior flow Fpri [13] (d) Depth edge map w
dep
pq

(e) Image edge map wstr
pq [11] (f) Initial segmentation S̃

Figure 4. Initial segmentation. We detect moving object re-
gions using clues from (a) image residuals weighted by (b) patch-
intensity variance and (c) prior flow. We also use (d) depth edge
and (e) image edge information to obtain (f) initial segmentation.

compute NCC-based matching costs between I = I0
t and

I ′ = I0
t+1 as

C ′
ncc
p (I, I ′) = TNCCτ (p,p′; I, I ′)− τncc (10)

where p′ = p + Frig(p) and τncc ∈ (0, τ) is a thresh-
old. However, TNCC values are unreliable at texture-less
regions (see the high-residual tarp in Fig. 4 (a)). Further-
more, if p′ is out of field-of-view, C ′ncc

p is not determined
(yellow pixels in Fig. 4 (a)). Thus, similarly to epipolar
stereo, we match I0

t with I ′ ∈ {I0
t−1, I

1
t−1, I

0
t+1, I

1
t+1} and

compute the average of valid matching costs

Cncc
p = λnccw

var
p AverageI′

[
C ′

ncc
p (I, I ′)

]
. (11)

Matching with many images increases the recall for detect-
ing moving objects. To improve matching reliability,Cncc

p is
weighted by wvar

p = min(StdDev(I), τw)/τw, the truncated
standard deviation of the 5× 5 patch centered at I(p). The
weight map wvar

p is visualized in Fig. 4 (b). We also trun-
cate C ′ncc

p (I, I ′) at 0, if p′ is expected to be occluded in I ′

by visibility test. We use (λncc, τncc, τw) = (4, 0.5, 0.005).
Flow term Cflo

p : This term evaluates flow residuals rp =
‖Frig(p) − Fpri(p)‖ between the rigid flow F and (non-
rigid) prior flow Fpri computed by [13] (see Fig. 4 (c)). Us-
ing a threshold τflo

p and the patch-variance weight wvar
p , we

define Cflo
p as

Cflo
p = λflow

var
p

[
min(rp, 2τ

flo
p )− τflo

p

]
/τflo

p . (12)

The part after wvar
p normalizes (rp − τflo

p ) to lie within
[−1, 1]. The threshold τflo

p is computed at each pixel p by

τflo
p = max(τflo, γ‖Frig(p)‖). (13)



This way the threshold is relaxed if the rigid motion Frig(p)
is large. If prior flow Fpri(p) is invalidated by bi-directional
consistency check (black holes in Fig. 4 (c)), Cflo

p is set to
0. We use (λflo, τ

flo, γ) = (4, 0.75, 0.3).
Prior term Cpri

p : This term encodes segmentation priors
based on results from previous frames or on scene context
via ground plane detection. Sec. 4.7 for the details.
Color term Ccol

p : This is a standard color-likelihood
term [6] for RGB color vectors Ip of pixels in the reference
image I0

t (p):

Ccol
p = λcol

[
log θ1(Ip)− log θ0(Ip)

]
. (14)

We use λcol = 0.5 and 643 bins of histograms for the color
models {θ0, θ1}.
Smoothness term Epotts: This term is based on the Potts
model defined for all pairs of neighboring pixels (p,q) ∈
N on the 8-connected pixel grid.

Epotts(s) = λpotts

∑
(p,q)∈N

(ωcol
pq + ωdep

pq + ωstr
pq)|sp − sq|. (15)

We use three types of edge weights. The color-based
weight ωcol

pq is computed as ωcol
pq = e−‖Ip−Iq‖

2
2/κ1 where

κ1 is estimated as the expected value of 2‖Ip − Iq‖22 over
(p,q) ∈ N [34]. The depth-based weight ωdep

pq is computed
as ωdep

pq = e−|Lp+Lq|/κ2 where Lp = |∆D(p)| is the abso-
lute Laplacian of the disparity map D. The κ2 is estimated
similarly to κ1. The edge-based weight ωstr

pq uses an edge
map ep ∈ [0, 1] obtained by a fast edge detector [11] and is
computed as ωstr

pq = e−|ep+eq|/κ3 . Edge maps of ωdep
pq and

ωstr
pq (in the form of 1 − wpq) are visualized in Figs. 4 (d)

and (e). We use (λpotts, κ3) = (10, 0.2).
The minimization of Eseg(s) is similar to the Grab-

Cut [34] algorithm, i.e., we alternate between minimizing
Eseg(s) using graph cuts [5] and updating the color models
{θ1, θ0} of Ccol

p from segmentation s. We run up to five
iterations until convergence using dynamic max-flow [22].

4.5. Optical Flow

Next, we estimate the non-rigid flow proposal Fnon for
the moving foreground regions estimated as the initial seg-
mentation S̃. Similar to Full Flow [9], we pose optical flow
as a discrete labeling problem where the labels represent 2D
translational shifts with in a 2D search range (see Sec. 4.7
for range estimation). Instead of TRW-S [23] as used in [9],
we apply the SGM algorithm as a discrete optimizer. After
obtaining a flow map from SGM as shown in Fig. 5 (a), we
filter it further by 1) doing bi-directional consistency check
(see Fig. 5 (b)), and 2) filing holes by weighted median fil-
tering to get the non-rigid flow proposal Fnon. The flow
consistency map Oflo(p) is passed to the next stage. Our
extension of SGM is straightforward and is detailed in our
supplementary material as well as the refinement scheme.

(a) Non-rigid flow by SGM flow (b) Consistency check

(c) Non-rigid flow proposal Fnon (d) Rigid flow proposal Frig

(e) Final flow map F (f) Final segmentation mask S
Figure 5. Optical flow and flow fusion. We obtain non-rigid flow
proposal by (a) performing SGM followed by (b) consistency fil-
tering and (c) hole filing by weighted median filtering. This flow
proposal is fused with (d) the rigid flow proposal to obtain (e) the
final flow estimate and (f) motion segmentation.

4.6. Flow Fusion and Final Segmentation

Given the rigid and non-rigid flow proposals Frig and
Fnon, we fuse them to obtain the final flow estimate F . This
fusion step also produces the final segmentation S. These
inputs and outputs are illustrated in Figs. 5 (c)–(f).

The fusion process is similar to the initial segmentation.
The binary variables sp ∈ {0, 1} indicating the final seg-
mentation S, now also indicate which of the two flow pro-
posals {Frig(p),Fnon(p)} is selected as the final flow esti-
mate F(p). To this end, the energy Eseg of Eq. (9) is modi-
fied as follows. First, Cncc

p is replaced by

Cncc
p =λnccw

var
p [TNCCτ (p,p′rig)−TNCCτ (p,p′non)], (16)

where p′rig = p + Frig(p) and p′non = p + Fnon(p). Sec-
ond, the prior flow Fpri(p) in Cflo

p is replaced by Fnon(p).
When p′rig is out of view or Fnon(p) is invalidated by the
flow occlusion map Oflo(p), we set Cncc

p and Cflo
p to 0.

The fusion step only infers sp for pixels labeled fore-
ground in the initial segmentation S̃, since the background
labels are fixed. The graph cut optimization for fusion is
typically very efficient, since the pixels labeled foreground
in S̃ is often a small fraction of all the pixels.

4.7. Implementation Details

Disparity range reduction. For improving the efficiency
of epipolar stereo, the disparity range [0, Dmax] is reduced
by estimating Dmax from the initially estimated D̃(p). We
compute Dmax robustly by making histograms of non-
occluded disparities of D̃(p) and ignoring bins whose fre-
quency is less than 0.5%. Dmax is then chosen as the max



bin from remaining valid non-zero bins.
Flow range estimation. The 2D search range R =
([umin, umax] × [vmin, vmax]) for SGM flow is estimated as
follows. For the target region S̃, we compute three such
ranges from feature-based sparse correspondences, the prior
flow and rigid flow. For the latter two, we robustly compute
ranges by making 2D histograms of flow vectors and ignor-
ing bins whose frequency is less than one-tenth of the max
frequency. Then, the final range R is the range that covers
all three. To make R more compact, we repeat the range
estimation and subsequent SGM for individual connected
components in S̃.
Cost-map smoothing. Since NCC and flow-based cost
maps Cncc

p and Cflo
p used in the segmentation and fusion

steps are noisy, we smooth them by averaging the values
within superpixels. We use superpixelization of approxi-
mately 850 segments produced by [37] in OpenCV.
Segmentation priors. We define Cpri

p of Eq. (9) as Cpri
p =

λmaskC
mask
p +Cpcol

p . Here, Cmask
p ∈ [−0.1, 1] is a signed soft

mask predicted by previous mask St−1 and flowFt−1. Neg-
ative background regions are downweighted by 0.1 for bet-
ter detection of new emerging objects. We use λmask = 2.
Cpcol

p is a color term similar to Eq. (14) with the same λcol
but uses color models updated online as the average of past
color models. For road scenes, we additionally use the
ground prior such as shown in Fig. 6 as a cue for the back-
ground. It is derived by the ground plane detected using
RANSAC. See the supplementary material for more details.

Figure 6. Segmentation ground prior. For road scenes (left), we
compute the ground prior (middle) from the disparity map (right).

Others. We run our algorithm on images downscaled by
a factor of 0.4 for optical flow and 0.65 for the other steps
(each image in KITTI is 1242 × 375 pixels). We do a sub-
pixel refinement of the SGM disparity and flow maps via
standard local quadratic curve fitting [16].

5. Experiments
We evaluate our method on the KITTI 2015 scene flow

benchmark [30] and further extensively evaluate on the
challenging Sintel (stereo) datasets [7]. On Sintel we com-
pare with the top two state of the art methods – PRSM [43]
and OSF [30]. PRSM is a multi-frame method like ours. Al-
though OSF does not explicitly distinguish moving objects
from static background in segmentation, the dominant rigid
motion bodies are assigned the first object index, which we
regarded as background in evaluations. Our method was
implemented in C++ and running times were measured on
a computer with a quadcore 3.5GHz CPU. All parameter
settings were determined using KITTI training data for val-
idation. Only two parameters were re-tuned for Sintel.

5.1. KITTI 2015 Scene Flow Benchmark

We show a selected ranking of KITTI benchmark results
in Table 1, where our method is ranked third. Our method is
much faster than all the top methods and more accurate than
the fast methods [10, 8]. See Fig. 8 for the per-stage running
times. The timings for most stages of our method are small
and constant, while for optical flow they vary depending on
the size of the moving objects. Motion segmentation results
are visually quite accurate (see Fig. 7). As shown in Table 2,
epipolar stereo refinement using temporarily adjacent stereo
frames improves disparity accuracy even for non-occluded
pixels. By visual inspection of successive images aligned
via the camera motion and depth, we verified that there was
never any failure in ego-motion estimation.

5.2. Evaluation on Sintel Dataset

Unlike previous scene flow methods, we also evaluated
our method on Sintel and compared it with OSF [30] and
PRSM [43] (see Table 3 – best viewed in color). Recall,
PRSM does not perform motion segmentation. Although
OSF and PRSM are more accurate on KITTI, our method
outperforms OSF on Sintel on all metrics. Also, unlike
OSF, our method is multi-frame. Sintel scenes have fast, un-
predictable camera motion, drastic non-rigid object motion
and deformation unlike KITTI where vehicles are the only
type of moving objects. While OSF and PRSM need strong
rigid regularization, we employ per-pixel inference with-
out requiring piecewise planar assumption. Therefore, our
method generalizes more easily to Sintel. Only two parame-
ters had to be modified as follows. (λcol, τncc) = (1.5, 0.25).
Limitations. The visual odometry step may fail when the
scene is far away (see mountain 1 in Fig. 9) due to subtle
disparity. It may also fail when the moving objects domi-
nate the field of view. Our motion segmentation results are
often accurate but in the future we will improve temporal
consistency to produce more coherent motion segmentation.

6. Conclusions

We proposed an efficient scene flow method that uni-
fies dense stereo, optical flow, visual odometry, and motion
segmentation estimation. Even though simple optimization
methods were used in our technique, the unified framework
led to higher overall accuracy and efficiency. Our method is
currently ranked third on the KITTI 2015 scene flow bench-
mark after PRSM [43] and OSF [30] but is 1–3 orders of
magnitude faster than the top six methods. On challenging
Sintel sequences, our method outperforms OSF [30] and
is close to PRSM [43] in terms of accuracy. Our efficient
method could be used to initialize PRSM [43] to improve
its convergence speed. We hope it will enable new, practi-
cal applications of scene flow.



Table 1. KITTI 2015 scene flow benchmark results [30]. We show the error rates (%) for the disparity on the reference frame (D1) and
second frame (D2), the optical flow (Fl) and the scene flow (SF) at background (bg), foreground (fg) and all pixels. Disparity or flow is
considered correctly estimated if the end-point error is < 3px or < 5%. Scene flow is considered correct if D1, D2 and Fl are correct.

Rank Method D1-bg D1-fg D1-all D2-bg D2-fg D2-all Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all Time
1 PRSM [43] 3.02 10.52 4.27 5.13 15.11 6.79 5.33 17.02 7.28 6.61 23.60 9.44 300 s
2 OSF [30] 4.54 12.03 5.79 5.45 19.41 7.77 5.62 22.17 8.37 7.01 28.76 10.63 50 min
3 FSF+MS (ours) 5.72 11.84 6.74 7.57 21.28 9.85 8.48 29.62 12.00 11.17 37.40 15.54 2.7 s
4 CSF [28] 4.57 13.04 5.98 7.92 20.76 10.06 10.40 30.33 13.71 12.21 36.97 16.33 80 s
5 PR-Sceneflow [42] 4.74 13.74 6.24 11.14 20.47 12.69 11.73 27.73 14.39 13.49 33.72 16.85 150 s
8 PCOF + ACTF [10] 6.31 19.24 8.46 19.15 36.27 22.00 14.89 62.42 22.80 25.77 69.35 33.02 0.08 s (GPU)
12 GCSF [8] 11.64 27.11 14.21 32.94 35.77 33.41 47.38 45.08 47.00 52.92 59.11 53.95 2.4 s

(a) Reference image (b) Motion segmentation S (c) Disparity map D (d) Disparity error map (e) Flow map F (f) Flow error map
Figure 7. Our results on KITTI testing sequences 002 and 006. Black pixels in error heat maps indicate missing ground truth.

Table 2. Disparity improvements by epipolar stereo.
all pixels non-occluded pixels

D1-bg D1-fg D1-all D1-bg D1-fg D1-all
Binocular (D̃) 7.96 12.61 8.68 7.09 10.57 7.61
Epipolar (D) 5.82 10.34 6.51 5.57 8.84 6.06
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Figure 8. Running times on 200 sequences from KITTI. The av-
erage running time per-frame was 2.7 sec. Initialization includes
edge extraction [11], superpixelization [37] and feature tracking.

Table 3. Sintel evaluation [7]: We show error rates (%) for disparity
(D1), flow (Fl), scene flow (SF) and motion segmentation (MS) averaged
over the frames. Cell colors in OSF [30] and PRSM [43] columns show
performances relative to ours; blue shows where our method is better,
red shows where it is worse. We outperform OSF most of the time.

Ours OSF PRSM Ours OSF PRSM Ours OSF PRSM Ours OSF
alley_1 5.92 5.28 7.43 2.11 7.33 1.58 6.91 10.04 7.90 5.40 17.45
alley_2 2.08 1.31 0.79 1.20 1.44 1.08 2.99 2.49 1.63 1.94 1.31

ambush_2 36.93 55.13 41.77 72.68 87.37 51.33 80.33 90.96 61.92 1.72 32.76
ambush_4 23.30 24.05 24.09 45.23 49.16 41.99 49.81 53.25 46.14 20.98 19.82
ambush_5 18.54 19.54 17.72 24.82 44.70 25.23 35.15 52.26 34.12 2.50 19.39
ambush_6 30.33 26.18 29.41 44.05 54.75 41.98 49.93 58.46 47.08 53.95 24.98
ambush_7 23.47 71.58 35.07 27.87 22.47 3.35 44.51 77.94 36.92 26.77 36.08
bamboo_1 9.67 9.71 7.34 4.11 4.04 2.41 11.05 10.81 8.35 4.43 4.17
bamboo_2 19.27 18.08 17.06 3.65 4.86 3.58 21.39 21.24 19.23 4.08 4.54
bandage_1 20.93 19.37 21.22 4.00 18.40 3.30 23.72 36.57 23.37 33.32 46.66
bandage_2 22.69 23.53 22.44 4.76 13.12 4.06 24.19 32.33 23.62 16.37 41.14

cave_4 6.22 5.86 4.27 14.62 33.94 16.32 17.53 36.04 17.71 16.13 16.92
market_2 6.81 6.61 5.27 5.17 10.08 4.77 10.38 14.52 8.54 8.97 13.90
market_5 13.25 13.67 15.38 26.31 29.58 28.38 29.93 31.60 32.00 15.26 15.33
market_6 10.63 10.29 8.99 13.13 16.39 10.72 18.07 20.18 15.09 3.59 37.63

mountain_1 0.23 0.78 0.42 17.05 88.60 3.71 17.05 88.61 3.85 31.63 0.00
shaman_2 24.77 28.27 25.49 0.56 1.67 0.46 25.07 29.43 25.75 30.98 27.04
shaman_3 27.09 52.22 33.92 1.31 11.45 1.75 27.61 55.51 34.43 3.81 29.64
sleeping_2 3.52 2.97 1.74 0.02 0.01 0.00 3.52 2.97 1.74 0.00 0.54
temple_2 5.96 5.54 4.92 9.66 10.52 9.51 9.82 10.55 9.87 1.32 4.13
temple_3 10.65 16.62 11.04 62.34 81.39 32.10 63.56 81.86 34.60 4.20 25.42
AVERAGE 15.35 19.84 15.99 18.32 28.16 13.70 27.26 38.93 23.52 13.68 19.95

D1-all Fl-all SF-all MS-all

ambush 5 Ours GT Ours GT Ours

GT OSF PRSM OSF PRSM OSF

cave 4 Ours GT Ours GT Ours

GT OSF PRSM OSF PRSM OSF

mountain 1 Ours GT Ours GT Ours

GT OSF PRSM OSF PRSM OSF

Reference images / motion segmentation Disparity maps Flow maps
Figure 9. Comparisons on ambush 5, cave 4 and mountain 1 from Sintel: [LEFT] Motion segmentation results – ours, OSF and ground
truth. [MIDDLE] Disparity and [RIGHT] Flow maps estimated by our method, PRSM and OSF and the ground truth versions.
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