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Abstract

We propose a single-shot approach for simultaneously
detecting an object in an RGB image and predicting its 6D
pose without requiring multiple stages or having to examine
multiple hypotheses. Unlike a recently proposed single-shot
technique for this task [11] that only predicts an approx-
imate 6D pose that must then be refined, ours is accurate
enough not to require additional post-processing. As a re-
sult, it is much faster – 50 fps on a Titan X (Pascal) GPU
– and more suitable for real-time processing. The key com-
ponent of our method is a new CNN architecture inspired
by [28, 29] that directly predicts the 2D image locations of
the projected vertices of the object’s 3D bounding box. The
object’s 6D pose is then estimated using a PnP algorithm.

For single object and multiple object pose estimation
on the LINEMOD and OCCLUSION datasets, our ap-
proach substantially outperforms other recent CNN-based
approaches [11, 26] when they are all used without post-
processing. During post-processing, a pose refinement step
can be used to boost the accuracy of these two methods, but
at 10 fps or less, they are much slower than our method.

1. Introduction
Real-time object detection and 6D pose estimation is

crucial for augmented reality, virtual reality, and robotics.
Currently, methods relying on depth data acquired by RGB-
D cameras are quite robust [1, 4, 5, 12, 14]. However, ac-
tive depth sensors are power hungry, which makes 6D ob-
ject detection methods for passive RGB images more at-
tractive for mobile and wearable cameras. There are many
fast keypoint and edge-based methods [22, 32, 37] that are
effective for textured objects. However, they have difficulty
handling weakly textured or untextured objects and process-
ing low-resolution video streams, which are quite common
when dealing with cameras on wearable devices.

Deep learning techniques have recently been used to ad-
dress these limitations [11, 26]. BB8 [26] is a 6D object
detection pipeline made of one CNN to coarsely segment

the object and another to predict the 2D locations of the
projections of the object’s 3D bounding box given the seg-
mentation, which are then used to compute the 6D pose us-
ing a PnP algorithm [17]. The method is effective but slow
due to its multi-stage nature. SSD-6D [11] is a different
pipeline that relies on the SSD architecture [20] to predict
2D bounding boxes and a very rough estimate of the object’s
orientation in a single step. This is followed by an approxi-
mation to predict the object’s depth from the size of its 2D
bounding box in the image, to lift the 2D detections to 6D.
Both BB8 and SSD-6D require a further pose refinement
step for improved accuracy, which increases their running
times linearly with the number of objects being detected.

In this paper, we propose a single-shot deep CNN ar-
chitecture that takes the image as input and directly detects
the 2D projections of the 3D bounding box vertices. It is
end-to-end trainable and accurate even without any a poste-
riori refinement. And since, we do not need this refinement
step, we also do not need a precise and detailed textured
3D object model that is needed by other methods [11, 26].
We only need the 3D bounding box of the object shape for
training. This can be derived from other easier to acquire
and approximate 3D shape representations.

We demonstrate state-of-the-art accuracy on the
LINEMOD dataset [9], which has become a de facto
standard benchmark for 6D pose estimation. However,
we are much faster than the competing techniques by a
factor of more than five, when dealing with a single object.
Furthermore, we pay virtually no time-penalty when
handling several objects and our running time remains
constant whereas that of other methods grow proportional
to the number of objects, which we demonstrate on the
OCCLUSION dataset [1].

Therefore, our contribution is an architecture that yields
a fast and accurate one-shot 6D pose prediction without re-
quiring any post-processing. It extends single shot CNN ar-
chitectures for 2D detection in a seamless and natural way
to the 6D detection task. Our implementation is based on
YOLO [29] but the approach is amenable to other single-
shot detectors such as SSD [20] and its variants.
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2. Related Work
We now review existing work on 6D pose estimation

ranging from classical feature and template matching meth-
ods to newer end-to-end trainable CNN-based methods.

Classical methods. Traditional RGB object instance
recognition and pose estimation works used local keypoints
and feature matching. Local descriptors needed by such
methods were designed for invariance to changes in scale,
rotation, illumination and viewpoints [22, 32, 37]. Such
methods are often fast and robust to occlusion and scene
clutter. However, they only reliably handle textured objects
in high resolution images [16]. Other related methods in-
clude 3D model-based registration [18, 21, 36], Hausdorff
matching [10], oriented Chamfer matching for edges [19]
and 3D chamfer matching for aligning 3D curve-based
models to images [27].

RGB-D methods. The advent of commodity depth cam-
eras has spawned many RGB-D object pose estimation
methods [1, 4, 5, 12, 15, 24, 33, 40]. For example, Hin-
terstoisser proposed template matching algorithms suitable
for both color and depth images [8, 9]. Rios et al. [31]
extended their work using discriminative learning and cas-
caded detections for higher accuracy and efficiency respec-
tively. RGB-D methods were used on indoor robots for 3D
object recognition, pose estimation, grasping and manipu-
lation [4, 5, 6, 14, 15, 41]. Brachmann et al. [1] proposed
using regression forests to predict dense object coordinates,
to segment the object and recover its pose from dense cor-
respondences. They also extended their method to handle
uncertainty during inference and deal with RGB images [2].
Zach et al. [39] explored fast dynamic programming based
algorithms for RGB-D images.

CNN-based methods. In recent years, research in most
pose estimation tasks has been dominated by CNNs. Tech-
niques such as Viewpoints and Keypoints [35] and Render
for CNN [34] cast object categorization and 3D pose esti-
mation into classification tasks, specifically by discretizing
the pose space. In contrast, PoseNet [13] proposes using a
CNN to directly regress from an RGB image to a 6D pose,
albeit for camera pose estimation, a slightly different task.
Since PoseNet outputs a translational and a rotational com-
ponent, the two associated loss terms have to be balanced
carefully by tuning a hyper-parameter during training.

To avoid this problem, the newer PoseCNN architec-
ture [38] is trained to predict 6D object pose from a single
RGB image in multiple stages, by decoupling the transla-
tion and rotation predictors. A geodesic loss function more
suitable for optimizing over 3D rotations have been sug-
gested in [23]. Another way to address this issue has re-
cently emerged. In [11, 26], the CNNs do not directly pre-
dict object pose. Instead, they output 2D coordinates, 2D

masks, or discrete orientation predictions from which the
6D pose can be inferred. Because all the predictions are
in the 2D image, the problem of weighting different loss
terms goes away. Also training becomes numerically more
stable, resulting in better performance on the LINEMOD
dataset [9]. We also adopt this philosophy in our work.

In parallel to these developments, on the 2D object detec-
tion task, there has been a progressive trend towards single
shot CNN frameworks as an alternative to two-staged meth-
ods such as Faster-RCNN [30] that first find a few candidate
locations in the image and then classifies them as objects
or background. Recently, single shot architectures such as
YOLO [28, 29] and SSD [20] have been shown to be fast
and accurate. SSD has been extended to predict the object’s
identity, its 2D bounding box in the image and a discrete es-
timate of the object’s orientation [11, 25]. In this paper, we
go beyond such methods by extending a YOLO-like archi-
tecture [29] to directly predict a few 2D coordinates from
which the full 6D object pose can be accurately recovered.

3. Approach
With our goal of designing an end-to-end trainable net-

work that predicts the 6D pose in real-time, we were in-
spired by the impressive performance of single shot 2D ob-
ject detectors such as YOLO [28, 29]. This led us to de-
sign the CNN architecture [28, 29] shown in Fig. 1. We de-
signed our network to predict the 2D projections of the cor-
ners of the 3D bounding box around our objects. The main
insight was that YOLO was originally designed to regress
2D bounding boxes and to predict the projections of the 3D
bounding box corners in the image, a few more 2D points
had to be predicted for each object instance in the image.
Then given these 2D coordinates and the 3D ground control
points for the bounding box corners, the 6D pose can be cal-
culated algebraically with an efficient PnP algorithm [17].
BB8 [26] takes a similar approach. However, they first find
a 2D segmentation mask around the object and present a
cropped image to a second network that predicts the eight
2D corners in the image. We now describe our network ar-
chitecture and explain various aspects of our approach in
details.

3.1. Model

We formulate the 6D pose estimation problem in terms
of predicting the 2D image coordinates of virtual 3D con-
trol points associated with the 3D models of our objects of
interest. Given the 2D coordinate predictions, we calculate
the object’s 6D pose using a PnP algorithm. We parame-
terize the 3D model of each object with 9 control points.
For these control points, we select the 8 corners of the tight
3D bounding box fitted to the 3D model, similar to [26]. In
addition, we use the centroid of the object’s 3D model as
the 9th point. This parameterization is general and can be
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Figure 1. Overview: (a) The proposed CNN architecture. (b) An example input image with four objects. (c) The S × S grid showing cells
responsible for detecting the four objects. (d) Each cell predicts 2D locations of the corners of the projected 3D bounding boxes in the
image. (e) The 3D output tensor from our network, which represents for each cell a vector consisting of the 2D corner locations, the class
probabilities and a confidence value associated with the prediction.

used for any rigid 3D object with arbitrary shape and topol-
ogy. In addition, these 9 control points are guaranteed to be
well spread out in the 2D image and could be semantically
meaningful for many man-made objects.

Our model takes as input a single full color image, pro-
cesses it with a fully-convolutional architecture shown in
Figure 1(a) and divides the image into a 2D regular grid
containing S × S cells as shown in Figure 1(c). In our
model, each grid location in the 3D output tensor will be as-
sociated with a multidimensional vector, consisting of pre-
dicted 2D image locations of the 9 control points, the class
probabilities of the object and an overall confidence value.
At test time, predictions at cells with low confidence val-
ues, ie. where the objects of interest are not present, will be
pruned.

The output target values for our network are stored in a
3D tensor of size S × S × D visualized in Fig. 1(e). The
target values for an object at a specific spatial cell loca-
tion i ∈ S × S is placed in the i-th cell in the 3D tensor
in the form of a D dimensional vector vi. When N ob-
jects are present in different cells, we have N such vectors,
v1,v2, . . . ,vn in the 3D tensor. We train our network to
predict these target values. The 9 control points in our case
are the 3D object model’s center and bounding box corners
but could be defined in other ways as well. To train our net-
work, we only need to know the 3D bounding box of the
object, not a detailed mesh or an associated texture map.

As in YOLO, it is crucial that a trained network is able
to predict not only the precise 2D locations but also high

confidence values in regions where the object is present and
low confidence where it isn’t present. In case of 2D object
detection, YOLO uses for its confidence values, an inter-
section over union (IoU) score associated with the predicted
(and true 2D rectangles) in the image. In our case, the ob-
jects are in 3D and to compute an equivalent IoU score with
two arbitrary cuboids, we would need to calculate a 3D con-
vex hull corresponding to their intersections. This would be
tedious and would slow down training, as also analyzed in
our supplemental material. Therefore, we take a different
approach. We model the predicted confidence value using
a confidence function shown in Figure 2. The confidence
function, c(x), returns a confidence value for a predicted
2D point denoted by x based on its distance DT (x) from
the ground truth i.e. target 2D point. Formally, we define
the confidence function c(x) as follows:

c(x) =

{
e
α(1−DT (x)

dth
)
, if DT (x) < dth

0 otherwise
(1)

The distance DT (x) is defined as the 2D Euclidean dis-
tance in the image space. To achieve precise localization
with this function, we choose a sharp exponential function
with a cut-off value dth instead of a monotonically decreas-
ing linear function. The sharpness of the exponential func-
tion is defined by the parameter α. In practice, we apply
the confidence function to all the control points and cal-
culate the mean value and assign it as the confidence. As
mentioned earlier, we also predict C conditional class prob-
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Figure 2. Confidence c(x) as a function of the distance DT (x)
between a predicted point and the true point.

abilities at each cell. The class probability is conditioned on
the cell containing an object. Overall, our output 3D tensor
depicted in Figure 1(e) has dimension S×S×D, where the
2D spatial grid corresponding to the image dimensions has
S × S cells and each such cell has a D dimensional vector.
Here,D = 9×2+C+1, because we have 9 (xi, yi) control
points, C class probabilities and one confidence value.

Our network architecture follows the fully convolutional
YOLO v2 architecture [29]. Thus, our network has 23
convolutional layers and 5 max-pooling layers. Similar to
YOLO v2, we choose S = 13 and have a 13 × 13 2D spa-
tial grid on which we make our predictions. We also allow
higher layers of our network to use fine-grained features by
adding a passthrough layer. Specifically, we bring features
from an earlier layer at resolution 26× 26, apply batch nor-
malization and resize the input image during training on-
the-fly. As the network downsamples the image by a factor
of 32, we change the input resolution to a multiple of 32
randomly chosen from the set {320, 352, . . . , 608} to be ro-
bust to objects of different size.

3.2. Training Procedure
Our final layer outputs class probabilities, (x, y) coordi-

nate locations for the control points, and the overall confi-
dence score. During training, this confidence value is com-
puted on the fly using the function defined in Eq. 1 to mea-
sure the distance between the current coordinate predictions
and the ground-truth, DT (x). We predict offsets for the
2D coordinates with respect to (cx, cy), the top-left corner
of the associated grid cell. For the centroid, we constrain
this offset to lie between 0 and 1. However, for the corner
points, we do not constrain the network’s output as those
points should be allowed to fall outside the cell. The pre-
dicted control point (gx, gy) is defined as

gx = f(x) + cx (2)
gy = f(y) + cy (3)

where f(·) is chosen to be a 1D sigmoid function in case
of the centroid and the identity function in case of the eight

corner points. This has the effect of forcing the network
to first find the approximate cell location for the object and
later refine its eight corner locations. We minimize the fol-
lowing loss function to train our complete network.

L = λptLpt + λconfLconf + λidLid (4)

Here, the terms Lpt, Lconf and Lid denote the coordi-
nate, confidence and the classification loss, respectively. We
use mean-squared error for the coordinate and confidence
losses, and cross entropy for the classification loss. As sug-
gested in [28], we downweight the confidence loss for cells
that don’t contain objects by setting λconf to 0.1. This im-
proves model stability. For cells that contain objects, we set
λconf to 5.0. We set λpt and λid simply to 1.

When multiple objects are located close to each other
in the 3D scene, they are more likely to appear close to-
gether in the images or be occluded by each other. In these
cases, certain cells might contain multiple objects. To be
able to predict the pose of such multiple objects that lie in
the same cell, we allow up to 5 candidates per cell and there-
fore predict five sets of control points per cell. This essen-
tially means that we assumed that at most 5 objects could
occlude each other in a single grid cell. This is a reasonable
assumption to make in practical pose estimation scenarios.
As in [29], we precompute with k-means, five anchor boxes
that define the size, ie. the width and height of a 2D rectan-
gle tightly fitted to a masked region around the object in the
image. During training, we assign whichever anchor box
has the most similar size to the current object as the respon-
sible one to predict the 2D coordinates for that object.

3.3. Pose Prediction

We detect and estimate the pose of objects in 6D by in-
voking our network only once. At test time, we estimate the
class-specific confidence scores for each object by multiply-
ing the class probabilities and the score returned by the con-
fidence function. Each grid cell produces predictions in one
network evaluation and cells with predictions with low con-
fidence are pruned using a confidence threshold. For large
objects and objects whose projections lie at the intersection
of two cells, multiple cells are likely to predict highly confi-
dent detections. To obtain a more robust and well localized
pose estimate, we inspect the cells in the 3×3 neighborhood
of the cell which has the maximum confidence score. We
combine the individual corner predictions of these adjacent
cells by computing a weighted average of the individual de-
tections, where the weights used are the confidence scores
of the associated cells.

At run-time, the network gives the 2D projections of the
object’s centroid and corners of its 3D bounding box along
with the object identity. We estimate the 6D pose from
the correspondences between the 2D and 3D points using
a Perspective-n-Point (PnP) pose estimation method [17].



In our case, PnP uses only 9 such control point correspon-
dences and provides an estimate of the 3D rotation R and
3D translation t of the object in camera coordinates.

4. Implementation Details

We initialize the parameters of our network by training
the original network on the ImageNet classification task. As
the pose estimates in the early stages of training are inaccu-
rate, the confidence values computed using Eq. 1 are ini-
tially unreliable. To remedy this, we pretrain our network
parameters by setting the regularization parameter for con-
fidence to 0. Subsequently, we train our network by setting
λconf to 5 for the cells that contain an object, and to 0.1
otherwise, to have more reliable confidence estimates in the
early stages of the network. In practice, we set the sharpness
of the confidence function α to 2 and the distance threshold
to 30 pixels. We use stochastic gradient descent for opti-
mization. We start with a learning rate of 0.001 and divide
the learning rate by 10 at every 100 epochs. To avoid over-
fitting, we use extensive data augmentation by randomly
changing the hue, saturation and exposure of the image by
up to a factor of 1.5. We also randomly scale and trans-
late the image by up to a factor of 20% of the image size.
Our implementation is based on PyTorch. We will make our
code publicly available for the sake of reproducibility.

5. Experiments
We first evaluate our method for estimating the 6D pose

of single objects and then we evaluate it in the case where
multiple objects are present in the image. We use the same
datasets and evaluation protocols as in [2, 11, 26], which we
review below. We then present and compare our results to
the state of the art methods.

5.1. Datasets

We test our approach on two datasets that were designed
explicitly to benchmark 6D object pose estimation algo-
rithms. We describe them briefly below.

LineMod [9] has become a de facto standard benchmark
for 6D object pose estimation of textureless objects in clut-
tered scenes. The central object in each RGB image is as-
signed a ground-truth rotation, translation, and ID. A full
3D mesh representing the object is also provided. There
are 15783 images in LINEMOD for 13 objects. Each object
features in about 1200 instances.

OCCLUSION [1] is a multi-object detection and pose
estimation dataset that contains additional annotations for
all objects in a subset of the LINEMOD images. As its
name suggests, several objects in the images are severely
occluded due to scene clutter, which makes pose estimation
extremely challenging. With the exception of [11, 26], it

Method w/o Refinement w/ Refinement
Brachmann BB8 OURS Brachmann BB8

Object [2] [26] [2] [26]
Ape - 95.3 92.10 85.2 96.6

Benchvise - 80.0 95.06 67.9 90.1
Cam - 80.9 93.24 58.7 86.0
Can - 84.1 97.44 70.8 91.2
Cat - 97.0 97.41 84.2 98.8

Driller - 74.1 79.41 73.9 80.9
Duck - 81.2 94.65 73.1 92.2

Eggbox - 87.9 90.33 83.1 91.0
Glue - 89.0 96.53 74.2 92.3

Holepuncher - 90.5 92.86 78.9 95.3
Iron - 78.9 82.94 83.6 84.8

Lamp - 74.4 76.87 64.0 75.8
Phone - 77.6 86.07 60.6 85.3

Average 69.5 83.9 90.37 73.7 89.3
Table 1. Comparison of our approach with state-of-the-art algo-
rithms on LINEMOD in terms of 2D reprojection error. We report
percentages of correctly estimated poses. In Tables 1, 2 and 4 bold
face numbers denote the best overall methods, bold italic numbers
denote the best methods among those that do not use refinement
as opposed to the ones that use, if different. Note that even though
we do not rely on the knowledge of a detailed 3D object model our
method consistently outperforms the baselines.

has primarily been used to test algorithms that require depth
images.

5.2. Evaluation Metrics

We use three standard metrics to evaluate 6D pose accu-
racy, namely – 2D reprojection error, IoU score and average
3D distance of model vertices (referred to as ADD metric)
as in [2, 11, 26]. In all cases, we calculate the accuracy
as the percentage of correct pose estimates for certain error
thresholds.

When using the reprojection error, we consider a pose
estimate to be correct when the mean distance between the
2D projections of the object’s 3D mesh vertices using the
estimate and the ground truth pose is less than 5 pixels [2].
This measures the closeness of the true image projection of
the object to that obtained by using the estimated pose. This
metric is suitable for augmented reality applications.

To compute the IoU score, we measure the overlap be-
tween the projections of the 3D model given the ground-
truth and predicted pose and accept a pose as correct if the
overlap is larger than 0.5, as in [11].

When comparing 6D poses using the ADD metric, we
take a pose estimate to be correct if the mean distance be-
tween the true coordinates of 3D mesh vertices and those
estimated given the pose is less than 10% of the object’s di-
ameter [9]. For most objects, this is approximately a 2cm
threshold but for smaller objects, such as ape, the thresh-
old drops to about 1cm. For rotationally symmetric objects
whose pose can only be computed up to one degree of ro-
tational freedom, we modify slightly the metric as in [2, 9]



and compute

s =
1

|M|
∑
x1∈M

min
M
‖(Rx+ t)− (R̂x+ t̂)‖ , (5)

where (R, t) are the ground-truth rotation and translation,
(R̂, t̂) the predicted ones, andM the vertex set of the 3D
model. We use this metric when evaluating the pose accu-
racy for the rotationally invariant objects, eggbox and glue
as in [2, 9].

5.3. Single Object Pose Estimation

We first estimate the 6D pose of the central object
in the RGB only LINEMOD images, without reference
to the depth ones. We compare our approach to those
of [2, 11, 26], which operate under similar conditions.

In this dataset, the training images are selected such that
the relative orientation between corresponding pose annota-
tions are larger than a threshold. As in [2, 11, 26], to avoid
being influenced by the scene context and overfitting to the
background, we segment the training images using the seg-
mentation masks provided with the dataset and replace the
background by a random image from the PASCAL VOC
dataset [7].

We use exactly the same training/test splits as in [26].
We report our results in terms of 2D reprojection error in
Table 1, 6D pose error in Table 2 and IoU metric in Table 4.
We provide example pose predictions of our approach in
Figure 3.

5.3.1 Comparative Accuracy

6D Accuracy in terms of projection error. In Table 1,
we compare our results to those of Brachmann et al. [2] and
to BB8 [26]. Both of these competing methods involve a
multi-stage pipeline that comprises a 2D detection step fol-
lowed by pose prediction and refinement. Since we do not
have a refinement stage, we show in the table their results
without and with it. In both cases, we achieve better 6D
pose estimation accuracies.

In Table 4, we perform a similar comparison with SSD-
6D [11], whose authors report their projection accuracy in
terms of the IoU metric. That method also requires a pos-
teriori refinement and our results are again better in both
cases, even though SSD-6D relies on a large training set
of rendered images that are sampled over a wide range of
viewpoints and locations.

6D Accuracy in terms of the ADD metric. In Tables 2
and 3, we compare our methods against the other in terms of
the average of the 3D distances, as described in Section 5.2.
In Table 2, we give numbers before and after refinement for
the competing methods. Before refinement, we outperform

Method w/o Refinement w/ Refinement
Brachmann BB8 SSD-6D OURS Brachmann BB8 SSD-6D

Object [2] [26] [11] [2] [26] [11]
Ape - 27.9 0 21.62 33.2 40.4 65

Benchvise - 62.0 0.18 81.80 64.8 91.8 80
Cam - 40.1 0.41 36.57 38.4 55.7 78
Can - 48.1 1.35 68.80 62.9 64.1 86
Cat - 45.2 0.51 41.82 42.7 62.6 70

Driller - 58.6 2.58 63.51 61.9 74.4 73
Duck - 32.8 0 27.23 30.2 44.3 66

Eggbox - 40.0 8.9 69.58 49.9 57.8 100
Glue - 27.0 0 80.02 31.2 41.2 100

Holepuncher - 42.4 0.30 42.63 52.8 67.2 49
Iron - 67.0 8.86 74.97 80.0 84.7 78

Lamp - 39.9 8.20 71.11 67.0 76.5 73
Phone - 35.2 0.18 47.74 38.1 54.0 79

Average 32.3 43.6 2.42 55.95 50.2 62.7 79

Table 2. Comparison of our approach with state-of-the-art algo-
rithms on LINEMOD in terms of ADD metric. We report percent-
ages of correctly estimated poses.

Threshold 10% 30% 50%
Object [11] OURS [11] OURS [11] OURS

Ape 0 21.62 5.62 70.67 19.95 88.10
Benchvise 0.18 81.80 2.07 91.07 10.62 98.85

Cam 0.41 36.57 34.52 81.57 63.54 94.80
Can 1.35 68.80 61.43 99.02 85.49 99.90
Cat 0.51 41.82 36.87 90.62 64.04 98.80

Driller 2.58 63.51 56.01 99.01 84.86 99.80
Duck 0 27.23 5.56 70.70 32.65 89.39

Eggbox 8.9 69.58 24.61 81.31 48.41 98.31
Glue 0 80.02 14.18 89.00 26.94 97.20

Holepuncher 0.30 42.63 18.23 85.54 38.75 96.29
Iron 8.86 74.97 59.26 98.88 88.31 99.39

Lamp 8.20 71.11 57.64 98.85 81.03 99.62
Phone 0.18 47.74 35.55 91.07 61.22 98.85

Average 2.42 55.95 31.65 88.25 54.29 96.78

Table 3. Comparison of our approach with SSD-6D [11] without
refinement using different thresholds for the 6D pose metric.

all the methods by a significant margin of at least 12%. Af-
ter refinement, our pose estimates are still better than Brach-
mann et al. [2]. By assuming the additional knowledge of a
full 3D CAD model and using it to further refine the pose,
BB8 1 and SSD-6D 2 boost their pose estimation accuracy.

Without any bells and whistles, our approach achieves
state-of-the-art pose estimation accuracy in all the metrics
without refinement. When compared against methods that
rely on the additional knowledge of full 3D CAD models
and pose refinement, it still achieves state-of-the-art perfor-
mance in 2D projection error and IoU metrics and yields
comparable accuracy in the ADD metric. Our approach
could be used in conjunction with such refinement strate-
gies to further increase the accuracy however this comes at
a heavy computational cost as we describe below.

1The authors do not report results without refinement, however they
provided us with the accuracy numbers reported in Table 2.

2The authors were not able to provide their accuracy numbers without
refinement for this metric, but made their code publicly available. We ran
their code with provided pretrained models to obtain the 6D pose errors.



Method w/o Refinement w/ Refinement
SSD-6D OURS SSD-6D

Object [11] [11]
Ape 98.46 99.81 99

Benchvise 100 99.90 100
Cam 99.53 100 99
Can 100 99.81 100
Cat 99.34 99.90 99

Duck 99.04 100 98
Glue 97.24 99.81 98

Holepuncher 98.95 99.90 99
Iron 99.65 100 99

Lamp 99.38 100 99
Phone 99.91 100 100

Average 99.22 99.92 99.4
Driller - 100 99
Eggbox - 99.91 99

Table 4. Comparison of our approach against [11] on LINEMOD

using IoU metric. The authors of [11] were able to provide us the
results of our approach w/o the refinement.

5.3.2 Accuracy / Speed Trade-off
In Table 5, we report the computational efficiency of our
approach for single object pose estimation in comparison
to the state-of-the-art approaches [2, 11, 26]. Our approach
runs at real-time performance in contrast to the existing ap-
proaches which fall short of it. In particular, our algorithm
runs at least 5 times faster than the state-of-the-art tech-
niques for single object pose estimation.

As can be seen in Table 2, pose refinement in Brach-
mann et al. increase the accuracy significantly by 17.9% at
an additional run-time of 100 miliseconds per object. BB8
also gets a substantial improvement of 19.1% in accuracy at
an additional run-time of 21 miliseconds per object. Even
without correcting for the pose error, our approach outper-
forms Brachmann et al. and yields close accuracy to BB8
while being 16 times faster for single object pose estima-
tion. As discussed also in [11], the unrefined poses com-
puted from the bounding boxes of the SSD 2D object detec-
tor, are rather approximate. We confirmed this by running
their publicly available code with the provided pretrained
models. We report the accuracy numbers without the refine-
ment using the ADD metric in Table 3 for different thresh-
olds. While providing a good initialization for the subse-
quent pose processing, the pose estimates of SSD-6D with-
out refinement are much less accurate than our approach.
The further refinement increases the pose estimation accu-
racy significantly, however at the cost of a computational
time of 24 miliseconds per object. Moreover, in contrast to
our approach, the refinement requires the knowledge of the
full 3D object CAD model.

In Figure 3, we show example results of our method
on the LINEMOD. We include more visual results of our
method in the supplementary material.

5.4. Multiple Object Pose Estimation

We use the OCCLUSION dataset to compare our ap-
proach to Brachmann et al. [2] for multi-object detection
and report pose estimation accuracy as in [26]. The identity

Method Overall Speed Refinement runtime

Brachmann et al. [2] 2 fps 100 ms/object
Rad & Lepetit [26] 3 fps 21 ms/object
Kehl et al. [11] 10 fps 24 ms/object
OURS 50 fps -

Table 5. Comparison of the overall computational runtime of our
approach in comparison to [2, 11, 26]. We further provide the
computational runtime induced by the pose refinement stage of [2,
11, 26]

of the objects cannot be assumed to be known a priori and
has to be guessed. To this end, the method of [26] assumes
that it has access to image crops based on the ground-truth
2D bounding boxes 3. We make no such assumptions. In-
stead, we jointly detect the object in 2D, estimate its identity
and predict its 6D pose. We generate our training images
with the approach explained in Section 5.2. We further aug-
ment the LINEMOD training data by adding into the images
objects extracted from other training sequences. We report
our pose estimation accuracy in Figure 4 and demonstrate
that even without assuming ground-truth information as in
the case of [26], our method yields satisfactory pose accu-
racy in the case of severe occlusions. For object detection
purposes, we consider an estimate to be correct if its detec-
tion IoU is larger than 0.5. Note that here the detection IoU
corresponds to the overlap of the 2D bounding boxes of the
object, rather than the overlap of the projected masks as is
the case for the IoU metric defined in Sec 5.2. In Table 6,
we report a mean average precision (MAP) of 0.48 which is
similar to the accuracy reported by [2] and outperforms the
ones reported by [8, 11].

Method MAP

Hinterstoisser et al. [8] 0.21
Brachmann et al. [2] 0.51
Kehl et al. [11] 0.38
OURS 0.48

Table 6. The detection experiment on the Occlusion dataset [2].
(Left) Precision-recall plot. (Right)

Our approach provides accurate 6D poses with real-time
performance. Upon one network invocation, our only com-
putational overhead is an efficient PnP algorithm which op-
erates on just 9 points per object. Furthermore we do not
require full 3D colored object models to further refine our
initial pose estimates. Our approach is therefore scalable to
handle multiple objects as shown in Figure 5 and has only
a negligible computational overhead of PnP (0.2 milisec-
onds/object) while the competing approaches [11] have a
linear runtime growth.

We also evaluated the accuracy and speed of our ap-

3This it is not explicitly stated in [26], but the authors confirmed this to
us in private email communication.



Figure 3. Pose estimation results of our approach. Note that our method can recover the 6D pose in these challenging scenarios, which
involve significant amounts of clutter, occlusion and orientation ambiguity. In the last column, we show failure cases due to motion blur,
severe occlusion and specularity (this figure is best viewed on a computer screen).
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Figure 4. Percentage of correctly estimated poses as a function
of the projection error for different objects of the Occlusion
dataset [2].

0 5 10 15 20
Number of objects

0

100

200

300

400

500

R
un

tim
e 

in
 m

ilis
ec

on
ds

Kehl et al. `17
OURS

Figure 5. The runtime of our approach with increasing number of
objects as compared to that of [11].

proach for different input resolutions. As explained in Sec-
tion 3.1, we adopt a multi-scale training procedure and
change the input resolution during training randomly as
in [29]. This allows us to be able to change the input reso-
lution at test-time and predict from images with higher res-
olution. This is especially useful for predicting the pose
of small objects more robustly. As we do not have an ini-
tial step for 2D object detection and produce image crops
which are then resized to higher resolutions for pose pre-
diction as in [26], our approach requires better handling of
the small objects. In Table 7, we compare the accuracy and
computational efficiency of our approach for different input
resolutions. With only 1% decrease in accuracy the average

runtime per image is 94 ms and the runtime virtually re-
mains the same for estimating the pose of multiple objects.

Resolution 2D projection metric Speed

416 × 416 89.71 94 fps
480 × 480 90.00 67 fps
544 × 544 90.37 50 fps
688 × 688 90.65 43 fps

Table 7. Accuracy/speed trade-off of our method on the LINEMOD

dataset. Accuracy reported is the percentage of correctly estimated
poses w.r.t the 2D projection error. The same network model is
used for all four input resolutions. Timings are on a Titan X (Pas-
cal) GPU.

6. Conclusion

We have proposed a new CNN architecture for fast and
accurate single-shot 6D pose prediction that naturally ex-
tends the single shot 2D object detection paradigm to 6D
object detection. Our network predicts 2D locations of the
projections of the objects 3D bounding box corners which
involves predicting just a few more 2D points than for 2D
bounding box regression. Given the predicted 2D corner
projections, the 6D pose is computed via an efficient PnP
method. For high accuracy, existing CNN-based 6D ob-
ject detectors all refine their pose estimates during post-
processing, a step that requires an accurate 3D object model
and also incurs a runtime overhead per detected object. In
contrast, our single shot predictions are very accurate which
alleviates the need for refinement. Due to this, our method
is not dependent on access to 3D object models and there
is virtually no overhead when estimating the pose of multi-
ple objects. Our method is real-time; it runs at 50 – 94 fps
depending on the image resolution. This makes it substan-
tially faster than existing methods.



Acknowledgements. This work was supported in part by
the Swiss National Science Foundation. We would like to
thank Mahdi Rad, Vincent Lepetit, Wadim Kehl, Fabian
Manhardt and Slobodan Ilic for helpful discussions.

References
[1] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and

C. Rother. Learning 6D Object Pose Estimation Using 3D Object
Coordinates. In ECCV, 2014. 1, 2, 5, 10

[2] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold, et al.
Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from
a Single RGB Image. In CVPR, 2016. 2, 5, 6, 7, 8, 10

[3] K. Bringmann and T. Friedrich. Approximating the volume of unions
and intersections of high-dimensional geometric objects. Computa-
tional Geometry: Theory and Applications, 43:601–610, 2010. 10

[4] C. Choi and H. I. Christensen. 3D Textureless Object Detection and
Tracking: An Edge-Based Approach. In IROS, 2012. 1, 2

[5] C. Choi and H. I. Christensen. RGB-D Object Pose Estimation in Un-
structured Environments. Robotics and Autonomous Systems, 2016.
1, 2

[6] A. Collet, M. Martinez, and S. S. Srinivasa. The MOPED Frame-
work: Object Recognition and Pose Estimation for Manipulation.
The International Journal of Robotics Research, 2011. 2

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The PASCAL Visual Object Classes (VOC) Challenge.
IJCV, 2010. 6, 10

[8] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit. Multimodal Templates for Real-Time De-
tection of Texture-less Objects in Heavily Cluttered Scenes. In ICCV,
2011. 2, 7

[9] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Kono-
lige, and N. Navab. Model Based Training, Detection and Pose Es-
timation of Texture-less 3D Objects in Heavily Cluttered Scenes. In
ACCV, 2012. 1, 2, 5, 6, 10

[10] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Com-
paring Images using the Hausdorff Distance. TPAMI, 1993. 2

[11] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. SSD-6D:
Making RGB-Based 3D Detection and 6D Pose Estimation Great
Again. In ICCV, 2017. 1, 2, 5, 6, 7, 8, 10

[12] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab. Deep Learn-
ing of Local RGB-D Patches for 3D Object Detection and 6D Pose
Estimation. In ECCV, 2016. 1, 2

[13] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A Convolutional
Network for Real-Time 6-DOF Camera Relocalization. In ICCV,
2015. 2

[14] K. Lai, L. Bo, X. Ren, and D. Fox. A Large-Scale Hierarchical Multi-
View RGB-D Object Dataset. In ICRA, 2011. 1, 2

[15] K. Lai, L. Bo, X. Ren, and D. Fox. A Scalable Tree-Based Approach
for Joint Object and Pose Recognition. In AAAI, 2011. 2

[16] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid
Objects: A Survey. Foundations and Trends in Computer Graphics
and Vision, 2005. 2

[17] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An Accurate O(n)
Solution to the PnP problem. IJCV, 2009. 1, 2, 4

[18] Y. Li, L. Gu, and T. Kanade. Robustly Aligning a Shape Model and
Its Application to Car Alignment of Unknown Pose. TPAMI, 2011.
2

[19] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa. Fast Di-
rectional Chamfer Matching. In CVPR, 2010. 2

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg. SSD: Single Shot MultiBox Detector. In ECCV, 2016.
1, 2

[21] D. G. Lowe. Fitting Parameterized Three-Dimensional Models to
Images. TPAMI, 1991. 2

[22] D. G. Lowe. Object Recognition from Local Scale-Invariant Fea-
tures. In ICCV, 1999. 1, 2

[23] S. Mahendran, H. Ali, and R. Vidal. 3D Pose Regression using Con-
volutional Neural Networks. CVPRW, 2017. 2

[24] F. Michel, A. Kirillov, E. Brachmann, A. Krull, S. Gumhold,
B. Savchynskyy, and C. Rother. Global Hypothesis Generation for
6D Object Pose Estimation. In CVPR, 2017. 2

[25] P. Poirson, P. Ammirato, C.-Y. Fu, W. Liu, J. Kosecka, and A. C.
Berg. Fast Single Shot Detection and Pose Estimation. In 3DV,
2016. 2

[26] M. Rad and V. Lepetit. BB8: A Scalable, Accurate, Robust to Partial
Occlusion Method for Predicting the 3D Poses of Challenging Ob-
jects without Using Depth. In ICCV, 2017. 1, 2, 5, 6, 7, 8, 10, 11,
12

[27] K. Ramnath, S. N. Sinha, R. Szeliski, and E. Hsiao. Car Make and
Model Recognition using 3D Curve Alignment. In WACV, 2014. 2

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look
Once: Unified, Real-Time Object Detection. In CVPR, 2016. 1, 2, 4

[29] J. Redmon and A. Farhadi. YOLO9000: Better, Faster, Stronger.
CVPR, 2017. 1, 2, 4, 8

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. In NIPS,
2015. 2

[31] R. Rios-Cabrera and T. Tuytelaars. Discriminatively Trained Tem-
plates for 3d Object Detection: A Real Time Scalable Approach. In
ICCV, 2013. 2

[32] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 3D Object
Modeling and Recognition using Local Affine-Invariant Image De-
scriptors and Multi-View Spatial Constraints. IJCV, 2006. 1, 2

[33] J. Sock, S. H. Kasaei, L. S. Lopes, and T.-K. Kim. Multi-view 6D
Object Pose Estimation and Camera Motion Planning using RGBD
Images. In ICCV, 2017. 2

[34] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for CNN: Viewpoint
Estimation in Images Using CNNs trained with Rendered 3D Model
Views. In ICCV, 2015. 2

[35] S. Tulsiani and J. Malik. Viewpoints and Keypoints. In CVPR, 2015.
2

[36] L. Vacchetti, V. Lepetit, and P. Fua. Stable Real-Time 3D Tracking
Using Online and Offline Information. PAMI, 26(10), 2004. 2

[37] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Pose Tracking from Natural Features on Mobile Phones. In
ISMAR, 2008. 1, 2

[38] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. PoseCNN: A Con-
volutional Neural Network for 6D Object Pose Estimation in Clut-
tered Scenes. arXiv preprint arXiv:1711.00199, 2017. 2

[39] C. Zach, A. Penate-Sanchez, and M.-T. Pham. A Dynamic Program-
ming Approach for Fast and Robust Object Pose Recognition from
Range Images. In CVPR, 2015. 2

[40] H. Zhang and Q. Cao. Combined Holistic and Local Patches for
Recovering 6D Object Pose. In ICCV, 2017. 2

[41] M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang,
C. Phillips, M. Lecce, and K. Daniilidis. Single Image 3D Object
Detection and Pose Estimation for Grasping. In ICRA, 2014. 2



Supplemental Material:
“Real-Time Seamless Single Shot 6D Object Pose Prediction”

In the supplemental material, we provide details on how
the training images were prepared and on the proposed
confidence function and the weighted prediction step. We
also present qualitative results on OCCLUSION [1] and
LINEMOD [9].
Training Images. As discussed in the main paper, we
segment the foreground object in the images of the train-
ing set, using the segmentation masks provided and paste
the segmented image over a random image as in [2, 11, 26].
Examples of such images, which are given as input to the
network at training time are shown in Figure 6. This oper-
ation of removing the actual background prevents the net-
work from overfitting to the background, which is similar
for training and test images of LINEMOD. When we train a
model without eliminating the background, in practice, we
observe about 1% improvement in the 2D projection score.

Figure 6. Using segmentation masks given in LINEMOD, we ex-
tract the foreground objects in our training images and compos-
ite them over random images from PASCAL VOC [7]. We also
augment the training set by combining images of multiple objects
taken from different training images.

Confidence function. We analyze in Figure 7 our confi-
dence function in comparison to 3D cube IoU in terms of its
value and runtime. We show that our confidence function
closely approximates the actual 3D cube IoU while being
much faster to compute.

Confidence-weighted prediction. In the final step of our
method, we compute a weighted sum of multiple sets of
predictions for the corners and the centroid, using associ-
ated confidence values as weights. On LINEMOD, this gave
a 1–2% improvement in accuracy with the 2D projection
metric. The first step involves scanning the full 17×17 grid
to find the cell with the highest confidence for each poten-
tial object. We then consider a 3 × 3 neighborhood around
it on the grid and prune the cells with confidence values
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Figure 7. Comparison of the 3D IoU and our 2D confidence score
in value (Left) and runtime (Right). The model for the Cam ob-
ject is shifted in x-dimension synthetically to produce a distorted
prediction and projected on the image plane with randomly chosen
20 transformation matrices from LINEMOD. Scores are computed
between the ground-truth references and distorted predictions. Re-
sults are averaged over all the trials. The runtime for 3D IoU is
computed using the optimized PyGMO library that relies on [3].

Figure 8. (Left) The 17×17 grid on a 544×544 image. (Middle)
Confidence values for predictions of the ape object on the grid.
(Right) Cropped view of our pose estimate (shown in blue) and
the ground truth (shown in green). Here, three cells next to the
best cell have good predictions and their combination gives a more
accurate pose than the best prediction alone (best viewed in color).

lower than the detection threshold of 0.5. On the remaining
cells, we compute a confidence-weighted average of the as-
sociated predicted 18-dimensional vectors, where the eight
corner points and the centroid have been stacked to form
the vector. The averaged coordinates are then used in the
PnP method. This sub-pixel refinement on the grid usually
improves the pose of somewhat large objects that occupy
several adjoining cells in the grid. Figure 8 shows an exam-
ple where the ape object lies between two adjoining cells
and the confidence weighting improves the pose accuracy.

Qualitative Results. We show qualitative results from the
OCCLUSION [1] and LINEMOD [9] datasets in Figures 9
to 14. These examples show that our method is robust to
severe occlusions, rotational ambiguities in appearance, re-
flections, viewpoint change and scene clutter.



Figure 9. Results on the OCCLUSION dataset. Our method is quite robust against severe occlusions in the presence of scene clutter and
rotational pose ambiguity for symmetric objects. (left) Input images, (middle) 6D pose predictions of multiple objects, (right) A magnified
view of the individual 6D pose estimates of six different objects is shown for clarity. In each case, the 3D bounding box is rendered
on the input image. The following color coding is used – APE (gold), BENCHVISE (green), CAN (red), CAT (purple), DRILLER (cyan),
DUCK (black), GLUE (orange), HOLEPUNCHER (blue). In addition to the objects from the OCCLUSION dataset, we also visualize the pose
predictions of the Benchvise object from the LINEMOD dataset. As in [26], we do not evaluate on the Eggbox object, as more than 70% of
close poses are not seen in the training sequence. This image is best viewed on a computer screen.



Figure 10. Results on the OCCLUSION dataset. Our method is quite robust against severe occlusions in the presence of scene clutter and
rotational pose ambiguity for symmetric objects. (left) Input images, (middle) 6D pose predictions of multiple objects, (right) A magnified
view of the individual 6D pose estimates of six different objects is shown for clarity. In each case, the 3D bounding box is rendered
on the input image. The following color coding is used – APE (gold), BENCHVISE (green), CAN (red), CAT (purple), DRILLER (cyan),
DUCK (black), GLUE (orange), HOLEPUNCHER (blue). In addition to the objects from the OCCLUSION dataset, we also visualize the pose
predictions of the Benchvise object from the LINEMOD dataset. As in [26], we do not evaluate on the Eggbox object, as more than 70% of
close poses are not seen in the training sequence. This image is best viewed on a computer screen.



Figure 11. Example results on the LINEMOD dataset: (left) APE, (middle) BENCHVISE, (right) CAM. The projected 3D bounding boxes
are rendered over the image and they have been cropped and resized for ease of visualization. The blue cuboid is rendered using our pose
estimate whereas the green cuboid is rendered using the ground truth object pose. Note that the input image dimension is 640 × 480 pixels
and the objects are often quite small. Noticeable scene clutter and occlusion makes these examples challenging.



Figure 12. Example results on the LINEMOD dataset: (left) CAN, (middle) CAT, (right) DRILLER. The projected 3D bounding boxes are
rendered over the image and they have been cropped and resized for ease of visualization. The blue cuboid is rendered using our pose
estimate whereas the green cuboid is rendered using the ground truth object pose. Note that the input image dimension is 640 × 480 pixels
and the objects are often quite small. Noticeable scene clutter and occlusion makes these examples challenging.



Figure 13. Example results on the LINEMOD dataset: (left) DUCK, (middle) EGGBOX, (right) GLUE. The projected 3D bounding boxes
are rendered over the image and they have been cropped and resized for ease of visualization. The blue cuboid is rendered using our pose
estimate whereas the green cuboid is rendered using the ground truth object pose. Note that the input image dimension is 640 × 480 pixels
and the objects are often quite small. Noticeable scene clutter and occlusion makes these examples challenging.



Figure 14. Example results on the LINEMOD dataset: (left) HOLEPUNCHER, (middle) IRON, (right) LAMP and PHONE. The projected 3D
bounding boxes are rendered over the image and they have been cropped and resized for ease of visualization. The blue cuboid is rendered
using our pose estimate whereas the green cuboid is rendered using the ground truth object pose. Note that the input image dimension is
640 × 480 pixels and the objects are often quite small. Noticeable scene clutter and occlusion makes these examples challenging.


