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Abstract

Digitally unwrapping paper sheets is a crucial step for
document scanning and accurate text recognition. This pa-
per presents a method for automatically rectifying curved or
folded paper sheets from a small number of images captured
from different viewpoints. Unlike previous techniques that
require either an expensive 3D scanner or over-simplified
parametric representation of the deformations, our method
only uses a few images and is based on general developable
surface model that can represent diverse sets of deforma-
tion of paper sheets. By exploiting the geometric prop-
erty of developable surfaces, we develop a robust rectifi-
cation method based on ridge-aware 3D reconstruction of
the paper sheet and `1 conformal mapping. We evaluate the
proposed technique quantitatively and qualitatively using
a wide variety of input documents, such as receipts, book
pages and letters.

1. Introduction

Digitally recording paper documents for editing and
sharing is a common task in our daily life. In practice, paper
documents are often curved or folded, and proper rectifica-
tion is needed for subsequent use of recorded documents,
such as text recognition and digital editing. One may phys-
ically rectify the paper documents using a flatbed scanner
for a class of paper sheets; however, there are a wide vari-
ety of documents that are not easy to do so, e.g., pages of
an opened book. Therefore, a method of digitally rectify-
ing paper documents is desired, and there have been several
studies for achieving this goal.

There are two major challenges in rectifying paper docu-
ments. One is accurately inferring the 3D shape of a curved
and folded paper sheet, and the other is flattening the in-
ferred shape without introducing distortions. To infer the
3D shape of curved paper sheets, previous approaches either
use a specialized hardware setup [18, 17, 1] or assume sim-
plified parametric shape models [28, 30, 26, 10, 21, 32, 17],

such as a generalized cylindrical surface (Fig. 2.a). While
these methods are shown effective, they are applicable in a
rather limited context due to the requirement of bulky setups
or restricted classes of paper sheet deformations.

This paper presents a method for digitally rectifying ar-
bitrarily curved and folded paper sheets from a few images
recorded from uncalibrated viewpoints. Unlike previous
techniques, our method work only with images taken from
hand-held cameras; thus, it is more applicable to a wide va-
riety of scenarios. Our method relies on structure from mo-
tion (SfM) to obtain the initial sparse 3D point cloud from
uncalibrated images. To infer an accurate and dense shape
of the paper sheet without losing the high-frequency struc-
tures such as folds and creases, we develop a ridge-aware
surface reconstruction method. To effectively neglect out-
liers that may present in the initial sparse 3D point cloud
due to repetitive textures in document images, we formulate
the dense surface reconstruction problem as robust Poisson
surface reconstruction using `1 optimization regularized by
the ridge-awareness. For unwrapping, we develop a robust
conformal mapping technique by incorporating the ridge-
awareness and `1 optimization in order to avoid global dis-
tortion and effect of outliers. The overview of the proposed
method is illustrated in Fig. 1.

The primary contributions of our work are threefold.
First, we use a ridge-aware regularization in both 3D surface
reconstruction and flattening (conformal mapping) to en-
sure accuracy of each step. The ridge-aware regularization
in surface reconstruction enables preserving the sharp struc-
ture of folds and creases, and that in flattening avoids global
distortion by serving as a non-local regularizer. Second, we
extend the conventional Poisson surface reconstruction [9]
and least-squares conformal mapping (LSCM) [11] to ex-
plicitly deal with outliers by introducing their variants based
on a `1 solution technique. Third, the unique combination
of these techniques result in a practical system that allows
to rectify curved and folded paper sheets in a convenient
manner.
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Figure 1. The pipeline of the proposed document rectification method.

(a) Generalized  

cylindrical surface  

(b) Cylinder-like 

developable surface 

(c) General  

developable surface 

Figure 2. Developable surfaces, specifically a paper sheet, has un-
derlying rulers (straight Gaussian curvatures). Dotted lines indi-
cate the rulers and solid lines indicate the fold-lines/ridges. (a)
Generalized cylindrical surface of which the rulers are parallel
to each other. (b) Cylinder-like developable surfaces of which
the rulers are almost parallel. (c) General developable surface of
which the rulers and ridge are in arbitrary direction.

2. Related Work

Digital rectification of curved and folded paper sheets
has been actively explored in the past two decades in both
the computer vision and document processing areas.

As illustrated in Fig. 2.a, many existing methods as-
sume the paper is curved only in one direction (general-
ized cylindrical surface) so that it can be parameterized
using a 1D smooth function. With this assumption, a va-
riety of techniques can be used to obtain the geometry.
Shape from shading has first been used by Wada et al. [28],
Tan et al. [33, 22], Courteille et al. [5] and Zhang et
al. [30]. Shape from boundary method is explored by
Tsoi et al. [25, 26]. Multi-view stereo with well calibrated
binocular cameras is used by Yamashita et al. [29], Koo et
al. [10] and Tsoi et al. [26]. Shape from text line is well
explored in both computer vision area and document pro-
cessing area [4, 33, 6, 27, 15, 7, 21, 16, 32], which assume
the content is well formatted print out characters. Liang et
al. [12] and Tian et al. [23] also use shape from text line and
relaxed the geometry model that surface rulers are not nec-
essary to be strictly parallel (cylinder-like developable sur-
face, Fig. 2.b). With parametric expression, document rec-
tification is through find the inverse function. Although the

above method works with a single image input, the strong
assumptions on surface geometry, contents and illumination
limit the applicability.

Alternatively, in order to rectify documents with arbi-
trary distortion and contents, existing methods employ spe-
cial devices. Brown et al. [1] use a calibrated mirror system
to obtain 3D geometry using multi-view stereo. and un-
wrap the surface with constraints on elastic energy, gravity
and collision. The model is inaccurate because developable
surfaces are not elastic. Later [2], they use range sensor to
directly obtain dense 3D points and flatten the surface us-
ing least square conformal mapping [11]. Zhang et al. [31]
also use range finder to obtain dense point cloud, and the
flattening is done by modifying the elastic constraints to
rigid constraints based on Brown et al.’s method [1]. Pilu
assumes the dense 3D mesh is already obtained and mini-
mizes the global bending potential energy to flatten the sur-
face [18]. Recently, Meng et al. designed a calibrated active
structural light device to retrieve the two parallel 1D curva-
tures [17]. Their method works with gray-scale contents.
None of these existing methods are as practical and conve-
nient as our method that only requires a hand-held camera.

3. Proposed Method

Our method consists of two steps: 3D document surface
reconstruction and unwrapping of the reconstructed surface.
For now, let us assume that sparse 3D points on the target
surface is obtained from the input images via SfM. We will
describe the detail of the input and SfM later as implemen-
tation details. In the following, we describe the two key
steps: ridge-aware surface reconstruction, and robust sur-
face unwrapping.

3.1. Ridge-aware surface reconstruction

One of the major challenges in accurate 3D reconstruc-
tion of folded papers from sparse 3D points is to retain
high-frequency ridges. Due to the lack of density of the
given 3D points, such ridges are typically smoothed out if a
conventional interpolation method is used. In addition, for
a document-like scene where repetitive textures are com-
monly observed, outliers in the sparse 3D point estimates
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Figure 3. The robust Poisson reconstruction and ridge-aware reconstruction from sparse points.

need to be taken care. We address these problems by devel-
oping a robust ridge-aware surface reconstruction method.
The proposed method is built upon Poisson surface recon-
struction [9], and we make two important modifications to
the original method by adding (1) robustness against out-
liers and (2) ridge-awareness.

Robust Poisson surface reconstruction We denote a
set of sparse points that are obtained from SfM as
{x̂n, ŷn, ẑn}, n = 1, 2, · · · , N , where N is the number of
the points. We use the sparse points that are seen from
at least three images. For our document input, the typ-
ical value of N ranges from 700 to 2000. By properly
choosing a reference view, we use a depth map parame-
terization z(x, y). Now we wish to recover depth values
of mesh grid vertices zi(xi, yi), where i is the mesh grid
index, 1 ≤ i ≤ I . Our method determines depth values
z = [z1, . . . , zI ]

> at grid points i. The optimal depth val-
ues z∗ is estimated by minimizing the following objective
function:

z∗ = argmin
z

Ed(z) + λEs(z), (1)

where Ed and Es are data and smoothness terms, respec-
tively, and λ is a weighting factor for controlling smooth-
ness. While the original Poisson surface reconstruction uses
the squared `2-norm for both terms, our method uses `1-
norm for the data term Ed for improving robustness against
outliers as

Ed(z) =
∑
n

‖ẑn − zi‖1. (2)

In Eq. (2), consistency among the original data points ẑn
and the corresponding depth values zi is ensured without
fitting outliers contained in {ẑn}. In a vector form, it is
re-written as

Ed(z) = ‖ẑ− PΩz‖1, (3)

where PΩ is a permutation matrix that selects and aligns
observed entries Ω by ensuring the correspondence between
ẑn and zi. The smoothness term Es is defined using the
squared Frobenius norm of the gradient of depth vector z

along x and y directions

Es(z) = ‖∇2z‖2F =

∥∥∥∥[∂2z

∂x2
,
∂2z

∂y2

]∥∥∥∥2

F

. (4)

By preparing a sparse derivative matrix D that replaces
the Laplace operator∇2 in a linear form:

D =


di,j =


2 if i = j

−1 if zj is left/right to zi

0 otherwise

di+I,j =


2 if i = j

−1 zj is above/below zi

0 otherwise


2I×I

, (5)

the problem is then viewed as a specialized form of the
Lasso problem [24] as

z∗ = argmin
z
‖ẑ− PΩz‖1 + λ‖Dz‖22. (6)

While the problem of Eq. (6) does not have a closed form
solution, we employ a type of iteratively reweighted least
squares (IRLS) method [3] for efficiently deriving the solu-
tion. By rewriting the data terms in Eq. (6) as a weighted
`2 norm using a diagonal weight matrix W whose elements
are all positive, we have

z∗=argmin
z

(ẑ− PΩz)
>
W>W (ẑ− PΩz) + λz>D>Dz. (7)

Note that the smoothness term is unchanged. Only the data
term is rewritten from `2 to `1. Our method iteratively up-
dates the estimate of z and weight matrix W by alternating
between two steps.
Step 1: Estimating z

We denote A =

[
WPΩ√
λD

]
and b =

[
Wẑ
02I×1

]
, where

02I×1 is a zero array with 2I elements. Then, Eq. (7) is
rewritten as z∗ = argminz ‖ Az−b ‖22, which is a squared
`2 sparse linear system that has a closed form solution. We
add a small regularizer αI for stabilizing the solution as

z∗ = [A>A + αI]−1A>b, (8)



where I is an identity matrix, α is a small positive scalar set
to α = 1.0e−8.
Step 2: Updating W

The matrix W is initialized to identity. For
each iteration, W is updated based on the residual
r = WPΩz

∗ −Wb. The i-th diagonal element of W is
updated using the i-th element of the residual r as

wi =
1

|ri|+ ε
, (9)

where ε = 1.0e−8 is a small positive scalar used to
avoid zero division. These steps are repeated until con-
vergence; namely, until the estimate at t-th iteration z∗(t)

does not vary much from the previous estimate z∗(t−1), i.e.,
‖z∗(t) − z∗(t−1)‖2 < 1.0e− 8. Figure 3.c is an example of
the reconstructed mesh.

Ridge-aware reconstruction Developable surfaces are
ruled [19], i.e., containing straight lines on the surface as il-
lustrated in Fig. 2. Our method exploits this geometric prop-
erty to identify and add ridge constraint for more accurate
surface reconstruction. Since extraction of ridges from im-
ages is difficult and so is from the sparse 3D points, we take
a sequential approach by using the reconstructed mesh de-
fined for z∗ via the robust Poisson reconstruction described
earlier, to determining the fold lines.

For each point z(x, y) on the mesh defined for z∗, we
compute the Hessian K as

K(z) =

[
∂2z
∂x2

∂2z
∂x∂y

∂2z
∂x∂y

∂2z
∂y2

]
. (10)

By Eigen decomposition of the Hessian,

K(z) = [p1,p2]

[
κ1 0
0 κ2

]
[p1,p2]

>
, (11)

we obtain two principal curvatures |κ1| and |κ2|
(|κ1| ≤ |κ2|) and corresponding eigenvectors p1 and p2.

For a developable surface, the smaller curvature κ1 = 0
holds at any location. In other words, the surface contains
a straight line along direction p1 at any point zi. As we
can see in Fig. 2, this property is most significant at ridges,
where the curvature is zero along the ridge while it becomes
significant in its tangent direction. Based on this observa-
tion, we determine ridge candidates using the greater princi-
ple curvature κ2. Specifically, for a mesh point zi(xi, yi), if
|κ2(i)| is greater than the threshold κth, it is then regarded
as a ridge candidate. Figure 3.d depicts an example of the
ridge candidates.

Using the ridge candidates, we re-weight its smoothness
constraints in Eq. (4) as:

d̃i,j = ϕ(〈p1, e1〉)di,j
d̃i+I,j = ϕ(〈p1, e2〉)di+1,j ,

(12)

Obtain local basis:
𝐀 = 𝑥3, 𝑦3, 𝑧3 − 𝑥1, 𝑦1, 𝑧1
𝐁 = 𝑥2, 𝑦2, 𝑧2 − 𝑥1, 𝑦1, 𝑧1
𝐍 = 𝐀 × 𝐁/ 𝐀 × 𝐁
𝐗 = 𝐀/ 𝐀
𝐘 = 𝐍 × 𝐗

𝑥1, 𝑦1, 𝑧1

𝐗

𝐘
𝐍

𝐀

𝐁

Coordinates in local basis
(𝑋1, 𝑌1) = (0, 0)
(𝑋2, 𝑌2) = (𝐁 ⋅ 𝐗, 𝐁 ⋅ 𝐘)
(𝑋3, 𝑌3) = (𝐀 ⋅ 𝐗, 0)

𝑥3, 𝑦3, 𝑧3

𝑥2, 𝑦2, 𝑧2

Figure 4. Obtain coordinates of vertices on local basis determined
by triangle.

where 〈 , 〉 is the inner product, e1 = [1, 0]>, e2 = [0, 1]>

are orthonormal bases. ϕ(·) is a convex monotonic func-

tion defined as ϕ(x) = βx2
−1

β−1 , which gives a greater weight
β � 1 along the ridge and smaller weight in the orthogonal
direction. Similar as Eq. (12), for ridge candidates we also
add directional smoothness constraints in slant direction
e3 = [

√
2

2 ,
√

2
2 ]> and e4 = [

√
2

2 ,−
√

2
2 ]>. By updating the

smoothness of Eq. (4) to incorporate the ridge-awareness,
we again solve the robust Poisson reconstruction for obtain-
ing the final reconstruction. Figure 3.e shows the improve-
ment of surface reconstruction with the ridge-awareness.

3.2. Surface Unwrapping

Once we obtain the 3D surface reconstruction, our next
step is to unwrap the surface. We take a conformal mapping
approach to this problem. While the least-squares confor-
mal mapping (LSCM) [11, 2] is a viable choice for us be-
cause of its efficiency, we make two extensions to address
the issues of outliers and global distortion. Namely, we use
a robust estimation scheme for solving the problem and in-
corporate the ridge-aware constraint again to this problem.

Conformal Mapping We first triangulate the mesh grid
defined for z using the following rule: For each point
zi(xi, yi), two triangles are generated; one is with its up-
per neighbor and left neighbor, the other is with its lower
neighbor and right neighbor. We denote the triangular mesh
as {T , z}. The conformal mapping aims to find a cor-
responding mesh in 2D space, denoted as {T ,u}, where
u = (ui, vi), i = 1, . . . , I , with the same topology by
best preserving the conformality of all the triangles. As
illustrated in Fig. 4, for a given triangle with three ver-
tices with the global coordinates (x1, y1, z1), (x2, y2, z2),
and (x3, y3, z3), we convert their coordinates to the local
2D coordinates (X1, Y1), (X2, Y2), and (X3, Y3). Then,
the conformal constraint is formulated for its mapping



uT = [u1, u2, u3, v1, v2, v3]> as

1

S

[
∆X1 ∆X2 ∆X3 −∆Y1 −∆Y2 −∆Y3
∆Y1 ∆Y2 ∆Y3 ∆X1 ∆X2 ∆X3

]
uT = 0, (13)

where ∆X1 = (X3 −X2), ∆X2 = (X1 −X3), and
∆X3 = (X2 −X1), and ∆Y are defined in a similar
manner, and S is the area of triangle T .

For all the triangles, the conformality constraints is for-
mulated as:

Cu = 0, (14)

where 0 is a zero array and C is a 2J × 2I sparse matrix
with the following non-zero elements

C =

[
cj,i = ∆X

Sj
, cj,i+I = −∆Y

Sj

cj+J,i = ∆Y
Sj
, cj+J,i+I = ∆X

Sj

]
, (15)

where 1 ≤ j ≤ J is the index of triangles and 1 ≤ i ≤ I is
the index of points.

Ridge constraints To avoid the global distortion in un-
wrapping, we use ridge and boundary constraints to regu-
larize the solution. Since the conformal mapping preserves
straight lines on ridges on a developable surface, these con-
straints serve as a non-local regularizer in the reconstruc-
tion. We formulate this collinearity in the same form as
conformality constraints, so that it can be solved in the same
framework. As illustrated in Fig. 4, when three points are
collinear, (x2, y2, z2) is also lying on the X axis; therefore,
Y2 = 0. In addition, the area of the triangle S is zero.
Hence, the ridge constraints can be formed in a similar man-
ner to Eq. (13) as[

∆X1 ∆X2 ∆X3 0 0 0
0 0 0 ∆X1 ∆X2 ∆X3

]
uR = 0. (16)

To form the constraints, for each ridge, we select its two end
points and one in the middle. Similarly, the boundary con-
straints are obtained in the form of Eq. (16), if we assume
the flattened document has straight boundaries (not straight
in the original 3D space).

All the ridge and boundary constraints can be repre-
sented as a linear system:

Ru = 0. (17)

Robust conformal mapping To robustify the conformal
mapping, we employ an `1 objective function instead of the
squared `2 norm. Putting together Eqs. (14) and (17) in the
`1 sense, we have:

u∗ = argmin
u

‖ Cu ‖1 +γ ‖ Ru ‖1, (18)

(a) Input (b) LSCM (c) ℓ1CM 

Figure 5. `1 conformal mapping with non-local constraints has
better robustness than the original LSCM.

where γ controls the importance of ridge and boundary con-
straints. To avoid the trivial solution u = 0, we fix two
points of u to (ui, vi) = (0, 0) and (uj , vj) = (0, 1). Equa-
tion (18) is then rewritten as

u∗ = argmin
u

‖ Cu ‖1 +γ ‖ Ru ‖1 +θ ‖ Efix ‖22, (19)

where Efix is the energy function for the two fixed
points. We solve the objective function using the iterative
reweighted method [3]. Figure 5 shows one of the results
with the conventional LSCM (`2 method) and our `1 solu-
tion method.

3.3. Implementation details

Structure from motion For the first step of 3D recon-
struction, we obtain sparse 3D points using SfM. Since
SfM does not need extra-equipment nor calibration, input
data can be conveniently collected by a hand-held camera.
Specifically, for each document, we record five to ten im-
ages from different viewpoints. When using a smart phone
camera that supports burst shot or HD video recording, data
can be acquired within a few seconds. While our method
is not restricted to a particular SfM algorithm, in this work,
we use the method developed by Snavely et al. [20, 8]. Fig-
ure 1.a is an example of the input data and recovered sparse
3D points.

Image warping After obtaining the flattened mesh grid
u = {ui, vi} after conformal mapping, we warp the image.
We begin with choosing one image with the largest content
area for warping out from the input images. To establish
the correspondence between the input image and {ui, vi},
we first project back the 3D mesh points {zi(xi, yi)} to the
image coordinates {x̃i, ỹi}. This is done using the camera
information obtained from SfM. Lastly we warp the image
content according to the correspondence between {x̃i, ỹi}
and {ui, vi} . We use bilinear interpolation for points lo-
cated between the reference mesh grid. Figure 1.e shows an
example of the final rectification results.
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Figure 6. Rectification results of the proposed method on various origami cases and contents.

4. Experiments

We evaluate the proposed technique qualitatively and
quantitatively using a wide variety of input documents from
different sources. The first set of experiments demonstrate
that our method can handle different paper types, docu-
ment contents and various types of foldings. Next, we re-
port a quantitative evaluation of our rectification method
using a global and a local distortion metrics. Finally, we
demonstrate the superior performance and advantages of
our method over existing approaches [2, 31].

4.1. Test Sequences

We test our method on typical foldings of a paper sheet.
The input images as well as the results from our method
are shown in Fig. 6. Specifically, the first six sequences (I
– VI) contain documents with no fold lines, one fold line,
two to three parallel fold lines, and two to three crossing
fold lines respectively. The other six sequences (VII – XII)
contain documents with an increasing number of fold lines
and there irregular fold lines were intentionally added to
make the rectification more challenging.

The documents photographed in sequence I - XII were
either placed on a planar or curved background surface or
held in hand (I). Sequence VII contains a shopping receipt
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Figure 7. Comparison on global and local distortion metric us-
ing data with the ground truth in Fig. 6. RA stands for the pro-
posed ridge-aware reconstruction while Po stands for Poisson re-
construction. L1 stands for the proposed `1 conformal mapping
with non-local constraints; L2 stands for LSCM (Brown et al.)
and Geo stands for geodesic unwrapping (Zhang et al.). Po + L2
generates results with obvious failure and is thus not compared.

on a paper roll whereas II and VIII contain pages from
a book. Sequences III, IV, IX and X contain folded let-
ters placed within envelopes. Sequence V, VI, XI and XII
contain examples of documents kept in purse/notebooks or
other small spaces.

Our method does not rely on the contents, formatting,
layout, color; thus is generally applicable as long as the pa-
per is textured which allows us to extract keypoints for SfM.

4.2. Quantitative Evaluation Metrics

We quantitatively evaluate the global and local distortion
between the ground truth digital image and our rectified re-
sult using a global and local metric. The digital version of
6 out of the 12 test documents are available to us and we
treat them as the ground truth. We normalize the height of
ground truth images to 1000 pixels. Here we ignore the pho-
tometric distortion introduced by the printer or the shading
caused by scene illumination.
Global distortion metric To evaluate the global distortion,
we register the rectified image to the ground truth using a
global affine transform. We find about 2K SIFT matches
[14] between the rectified image (feature positions are de-

RA + L1 (proposed) RA + Geo RA + L2

Po + L1 Po + Geo Po + L2

Figure 8. Visual comparison of rectification results obtained with
six different methods. The abbreviated method names are consis-
tent with Fig. 7 and the text. More results can be found in the
supplementary material.

noted as p = (pi, qi, 1)) and the ground truth (feature posi-
tions are denoted as p̂ = (p̂i, q̂i, 1)). Then the global trans-
form

T =

 a1 a2 t1
a3 a4 t2
0 0 s

 , (20)

is estimated by minimizing the squared error:

T∗ = argmin
T

‖ Tp− p̂ ‖22 . (21)

We define the global distortion metric G as the normalized
determinant of the affine part of T:

G = |a1a4 − a2a3|/s2

G = max (G, 1/G).
(22)

The identity transformation will have G = 1; and a larger
number of G = 1 indicates the higher degree of global dis-
tortion, i.e., lower accuracy. The result on global distortion
is summarized in Fig. 7.
Local distortion metric We also evaluate the local distor-
tions in our results by computing a dense correspondence
field using SIFT-flow [13] between the rectified image and
the ground truth image. The frequency distribution of local
displacements are shown in Fig. 7 and compared with ex-
isting methods. We found the SIFT-flow based registration
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Figure 9. Comparison of the global distortion metric between our method (top) and Zhang et al. [31] and Brown et al. [2] with varying
point density and noise. Note that lower values indicate higher accuracy. (b) Frequency distribution of local distortion metrics for the
corresponding experiments. The local metric also demonstrates the superiority of our method with higher noise and sparser point sets.

to be more useful for our assessment compared to that ob-
tained using sparse SIFT features since the sparse method
tends to neglect matches with large deformation which can
bias the evaluation.

4.3. Comparison with existing methods

Brown et al.’s [2] and Zhang et al.’s [31] methods, which
are applicable to general curves and foldings are compared.
Methods with an assumption of cylindrical surface do not
work with general data and are thus not compared.
Real data Data with the ground truth (Fig. 6) are used for
the evaluation. Both methods [2, 31] rely on the use of
3D range finder to obtain the dense geometry which are
not available from our data. Thus we use our reconstructed
surface as input for these methods and compare the perfor-
mance the surface flattening quality. We also compare the
behavior of our ridge-aware reconstruction to standard Pois-
son reconstruction. As illustrated in Fig. 7, the global and
local distortion are used to evaluate the reconstruction qual-
ity. And a visual comparison is summarized in Fig. 8. The
proposed method has better performance on both global and
local distortion evaluations.
Synthetic data We generated synthetic dense 3D points
to compare with [2, 31] since both those methods require
dense points. To evaluate our method on such data, we gen-
erate point sets whose size varies from 2K (typical of SfM)
to 300K (typical of range finder data) and we also inject
varying degree of Gaussian noise. Figure 9 shows a com-
parison of our method with [2, 31] based on the local and
global distortion metrics. These experiments demonstrate
that with low noise and high point density, all three meth-
ods are comparable in accuracy. However, when the point

set is sparser or when the noise level is higher, the proposed
method is more accurate than the existing methods [2, 31].

5. Conclusion and Future Work

In this paper, we propose a method for automatically
rectifying curved or folded paper sheets from a small num-
ber of images captured from different viewpoints. We use
SfM to obtain sparse 3D points from images and propose
ridge-aware surface reconstruction method which utilizes
the geometric property of developable surface for accurate
and dense 3D reconstruction of paper sheets. We also ro-
bustify the reconstruction by using `1 optimization. After
obtaining the surface geometry, we unwrap the surface by
adopting conformal mapping with both local and non-local
constraints in a robust estimation scheme. For the future
work, we consider correct the shading of the document and
further improve the geometric rectification.
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[11] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal
maps for automatic texture atlas generation. In ACM Transactions on
Graphics (TOG), volume 21, pages 362–371. ACM, 2002. 1, 2, 4

[12] J. Liang, D. DeMenthon, and D. Doermann. Geometric rectification
of camera-captured document images. Pattern Analysis and Machine
Intelligence (TPAMI), IEEE Transactions on, 30(4):591–605, 2008.
2

[13] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. Sift flow:
Dense correspondence across different scenes. In Tenth European
Conference on Computer Vision (ECCV), pages 28–42. Springer,
2008. 7

[14] D. G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision (IJCV), 60(2):91–
110, 2004. 7

[15] S. Lu, B. M. Chen, and C. C. Ko. A partition approach for the restora-
tion of camera images of planar and curled document. Image and
Vision Computing, 24(8):837–848, 2006. 2

[16] G. Meng, C. Pan, S. Xiang, J. Duan, and N. Zheng. Metric rectifi-
cation of curved document images. Pattern Analysis and Machine
Intelligence (TPAMI), IEEE Transactions on, 34(4):707–722, 2012.
2

[17] G. Meng, Y. Wang, S. Qu, S. Xiang, and C. Pan. Active flattening
of curved document images via two structured beams. In Computer
Vision and Pattern Recognition (CVPR), IEEE Conference on, pages
3890–3897. IEEE, 2014. 1, 2

[18] M. Pilu. Undoing paper curl distortion using applicable surfaces. In
Computer Vision and Pattern Recognition (CVPR), IEEE Conference
on, volume 1, pages I–67. IEEE, 2001. 1, 2

[19] E. Portnoy. Developable surfaces in hyperbolic space. Pacific Jour-
nal of Mathematics, 57(1):281–288, 1975. 4

[20] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: explor-
ing photo collections in 3d. ACM transactions on graphics (TOG),
25(3):835–846, 2006. 5

[21] N. Stamatopoulos, B. Gatos, I. Pratikakis, and S. J. Perantonis. Goal-
oriented rectification of camera-based document images. Image Pro-
cessing (TIP), IEEE Transactions on, 20(4):910–920, 2011. 1, 2

[22] C. L. Tan, L. Zhang, Z. Zhang, and T. Xia. Restoring warped docu-
ment images through 3d shape modeling. Pattern Analysis and Ma-
chine Intelligence (TPAMI), IEEE Transactions on, 28(2):195–208,
2006. 2

[23] Y. Tian and S. G. Narasimhan. Rectification and 3d reconstruction
of curved document images. In Computer Vision and Pattern Recog-
nition (CVPR), IEEE Conference on, pages 377–384. IEEE, 2011.
2

[24] R. Tibshirani. Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society. Series B (Methodological), pages
267–288, 1996. 3

[25] Y.-C. Tsoi and M. S. Brown. Geometric and shading correction for
images of printed materials: a unified approach using boundary. In
Computer Vision and Pattern Recognition (CVPR), IEEE Conference
on, volume 1, pages 240–246. IEEE Computer Society, 2004. 2

[26] Y.-C. Tsoi and M. S. Brown. Multi-view document rectification us-
ing boundary. In Computer Vision and Pattern Recognition (CVPR),
IEEE Conference on, pages 1–8. IEEE, 2007. 1, 2

[27] A. Ulges, C. H. Lampert, and T. M. Breuel. Document image de-
warping using robust estimation of curled text lines. In Document
Analysis and Recognition (ICDAR). Proceedings. Eighth Interna-
tional Conference on, pages 1001–1005. IEEE, 2005. 2

[28] T. Wada, H. Ukida, and T. Matsuyama. Shape from shading with
interreflections under a proximal light source: Distortion-free copy-
ing of an unfolded book. International Journal of Computer Vision
(IJCV), 24(2):125–135, 1997. 1, 2

[29] A. Yamashita, A. Kawarago, T. Kaneko, and K. T. Miura. Shape
reconstruction and image restoration for non-flat surfaces of docu-
ments with a stereo vision system. In Pattern Recognition. ICPR
2004. 17th International Conference on, volume 1, pages 482–485.
IEEE, 2004. 2

[30] L. Zhang, A. M. Yip, M. S. Brown, and C. L. Tan. A unified frame-
work for document restoration using inpainting and shape-from-
shading. Pattern Recognition, 42(11):2961–2978, 2009. 1, 2

[31] L. Zhang, Y. Zhang, and C. L. Tan. An improved physically-based
method for geometric restoration of distorted document images. Pat-
tern Analysis and Machine Intelligence (TPAMI), IEEE Transactions
on, 30(4):728–734, 2008. 2, 6, 8

[32] Z. Zhang, X. Liang, and Y. Ma. Unwrapping low-rank textures on
generalized cylindrical surfaces. In Computer Vision (ICCV), IEEE
International Conference on, pages 1347–1354. IEEE, 2011. 1, 2

[33] Z. Zhang, C. Lim, and L. Fan. Estimation of 3d shape of warped
document surface for image restoration. In Pattern Recognition
(ICPR). Proceedings of the 17th International Conference on, vol-
ume 1, pages 486–489. IEEE, 2004. 2


