
1 Derivation of Consistent Majority Optimization
In this document we provide a full derivation of the EM algorithm presented in Section 3 of the
main paper.

We represent uncertainty and linearize using conventions from Lie group theory; many re-
searchers in the fields of computer vision, physics, and manifold optimization agree that this is
the most natural and efficient method. We provide a very brief introduction to necessary Lie
group concepts as needed in this section. Many complete introductions may be found in the
literature, such as in the book by Murray, Li, and Sastry [1].

1.1 Model
In this section, let P be a Lie group of camera poses. In the case of inferring only rotations,
P = SO (3), and for the case of inferring full 6-DOF poses, P = SE (3). dimP is the tangent-space
dimensionality (the same as the number of degrees-of-freedom) of the pose, i.e. dimSO (3) = 3
and dimSE (3) = 6. In each case, p is the Lie algebra of P, either so (3) or se (3). The Lie
algebra is the tangent space about the identity element of a Lie group, and thus is the set of
partial derivatives of the identity element with respect to the degrees of freedom. For rotations
in SO (3), for instance, se (3) is the 3D vector space of skew-symmetric 3× 3 matrices.

The generative model of the ith relative pose measurement zi between a pair of cameras with
poses xj and xk is

zi = x−1
j xk exp ε̂i, (1)

where εi ∈ Rdim P is Gaussian noise drawn either from the inlier or outlier distribution:

εi ∼

{
N (0, C1) , yi = 1

N (0, C0) , yi = 0,
(2)

in which yi is a latent indicator variable denoting whether the measurement zi is correct (yi=1)
or erroneous (yi=0). C1 is the inlier covariance, which comes directly from the pairwise recon-
structions. C0 is the outlier covariance, which is chosen to be large.

Together, the hat operator and the exponential map in (1) convert a vector increment on
the rotation and translation axes (in this case the random variable εyi) into a relative pose
increment that may be composed with another pose, i.e. exp ·̂ : Rdim P → P. Individually, the
“hat” operator ·̂ : Rdim P → p transforms coordinates of degrees-of-freedom (such as rotation
axis-angles and translation directions) to a direction in the Lie algebra (e.g. for rotations the
skew-symmetric matrices). exp : p → P is the matrix exponential map, which maps from an
increment along a direction and distance in the Lie algebra back to the Lie group.

Later, we will make use of the logarithm map log : P → p, which is the inverse of the
exponential map. log∨ : P → Rdim P is the inverse of the combined exponential map and hat
operator exp ·̂, mapping a Lie group element to a set of coordinates in the Lie algebra representing
the corresponding increment from the identity element.

1.2 Inference
We perform inference on this model using EM. The M step amounts to finding the maximum
likelihood solution for the poses x given an estimate of the expected values of the indicator
variables y. The E step then estimates the expected value of each yi, i.e., the probabilities of
each of the edges being an inlier.

The key to efficient inference is that each latent variable yi is independent of any other
yi when conditioned on the camera poses. This avoids a combinatorial search over all of y.
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Thus, in EM, we optimize the expectation, with respect to the indicator variables, of the log-
likelihood of the parameters. Inside each iteration, we evaluate this expectation with respect to
the parameters from the previous iteration:

xt = arg max
x
〈log p (x |z, y)〉y |xt−1,z

= arg max
x

∑
y

(
(log p (x |z, y))

∏
i

p
(
yi |xt−1

j , xt−1
k , zi

))
, (3)

where 〈·〉 is the expectation with respect to the subscripted variables,
∑
y is a sum over all

possible combinations of y for each measurement i (note, however, that this soon simplifies into
a much more tractable sum), and L (·) is a log-likelihood. To write the parameter likelihood in
terms of known densities we factor it using Bayes’ law:

p (x|z, y) ∝ p (z |y, x) p (x)

∝

(∏
i

p (zi |yi, xj , xk)

)∏
j

p (xj) , (4)

where we have dropped the denominator since it is not a function of the optimization variable x,
and assumed independent priors over the camera poses p (xj) that do not depend on any other
variables. In our experiments we assumed uninformative pose priors, in which case the prior
terms may simply be omitted.

Next, substituting p (x |z, y) from (4) into (3) and simplifying, we obtain

〈L (x |z, y)〉y |xt−1,z =
∑
y

∑
i

L (zi |yi, xj , xk) +
∑
j

L (xj)

∏
i

p
(
yi |xt−1

j , xt−1
k , zi

)
=
∑
y

(∑
i

L (zi |yi, xj , xk)

)∏
i

p
(
yi |xt−1

j , xt−1
k , zi

)
+
∑
j

L (xj)

=
∑
i

∑
yi

L (zi |yi, xj , xk) p
(
yi |xt−1

j , xt−1
k , zi

)
+
∑
j

L (xj) , (5)

where L (·) ∆
= log p (·) is the log-likelihood, and

∑
yi

is a sum over the two possible values of yi,
0 and 1. Note that in the second step, we are able to pull

∑
j L (xj) outside of the sum over y

because this quantity does not depend on y and
∑
y p (y |x, z) = 1.

The M Step In the M step, we maximize the expected log-likelihood in Eq. 5 with respect to
the camera poses x. Note that this would be considerably more difficult if the expectation were
not with respect to the poses from the previous iteration. Since this is constant in this max-
imization, we let the shorthand λi

∆
= 〈yi〉yi |xt−1,zi

= p
(
yi=1 |xt−1

j , xt−1
k , zi

)
. Then expanding

the form for the Gaussian, we obtain

xt = arg max
x

C + L (x) +
∑
i

(
λti

(
−1

2

∥∥log∨
(
z−1
i x−1

j xk
)∥∥2

C1

)
+
(
1− λti

)(−1

2

∥∥log∨
(
z−1
i x−1

j xk
)∥∥2

C0

))
= arg max

x
L (x) +

−1

2

∑
i

∥∥log∨
(
z−1
i x−1

j xk
)∥∥2

(λiC1+(1−λi)C0)
, (6)
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where C is the constant from the Gaussian normalization terms. Note that the mixture of
Gaussians simplifies to a weighted average of the inlier and outlier covariance matrices, with
responsibility λti. In our implementation, we solve the nonlinear least-squares problem in (6) to
compute the updated poses xt using the Levenberg-Marquardt algorithm.

The E Step In the E step, we determine the sufficient statistics of p (y |x, z). As seen above
we need only the probability that yi=1, i.e. the expectation

λti = 〈yi〉yi |xt−1,zi

=
∑
yi

p (yi |x, zi) yi

= p
(
yi=1 |xt−1

j , xt−1
k , zi

)
=
p
(
zi |xt−1

j , xt−1
k , yi=1

)
p (yi=1)∑

yi
p
(
zi |xt−1

j , xt−1
k , yi

)
p (yi)

=
N
(
log∨

(
z−1
i x−1

j xk
)

; 0, C1

)
p (yi=1)∑

yi
N
(
log∨

(
z−1
i x−1

j xk
)

; 0, Cyi
)
p (yi)

, (7)

where Σi is either the inlier or outlier covariance, according to yi. The notation N (ξ; µ,Σ) is
the evaluation of a Gaussian PDF at ξ. The prior p (yi) may be estimated online, e.g. as a
Gaussian mixture prior, although in our experiments we use an uninformative prior.
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