Recovering Image Correspondence: New Methods and Applications

Sudipta N. Sinha

Microsoft Research

Redmond, USA

NII Shonan Meeting on Optimization Methods in Geometric Vision, January 28, 2019

Overview

RGB Stereo Images

Disparity Map

RGB/NIR Image Alignment

- Dense stereo matching
 - Optimization via Semi Global Matching (SGM)
 - Two extensions to SGM
- □ Learning to align images from scratch
 - Joint framework for local feature descriptor learning and image alignment
 - Application: RGB / NIR image registration

Semi Global Matching (SGM) [Hirschmüller 2005]

- <u>Motivation</u>: Markov Random Field (MRF) inference via Graph Cuts, BP etc. is too slow and approximate. So why not approximate even more.
- SGM is parallelizable; runs on GPUs and FPGAs.
- Widely used: assisted driving, robotics, aerial mapping.

Semi Global Matching (SGM) [Hirschmüller 2005]

 Solve several independent 1D scanline optimization problems; one for each of 4 or 8 directions.

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d') + V(d,d')).$$

Semi Global Matching (SGM) [Hirschmüller 2005]

 Solve several independent 1D scanline optimization problems; one for each of 4 or 8 directions.

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d') + V(d,d')).$$

• Sum the costs and select min cost disparity at each pixels. $S(\mathbf{p}, d) = \sum_{\mathbf{r}} L_{\mathbf{r}}(\mathbf{p}, d)$ $D_{\mathbf{p}} = \arg \min_{d} S(\mathbf{p}, d).$

Two Limitations of SGM

 Fronto-parallel bias due to pairwise smoothness term; leads to errors on slanted textureless surfaces.

$$V(d, d') = \begin{cases} 0 & \text{if } d = d' \\ P_1 & \text{if } |d - d'| = 1 \\ P_2 & \text{if } |d - d'| \ge 2 \end{cases}$$

Two Limitations of SGM

 Fronto-parallel bias due to pairwise smoothness term; leads to errors on slanted textureless surfaces.

$$V(d, d') = \begin{cases} 0 & \text{if } d = d' \\ P_1 & \text{if } |d - d'| = 1 \\ P_2 & \text{if } |d - d'| \ge 2 \end{cases}$$

 Summing up costs and picking the best disparity (last two steps lack proper justification

$$L_{\mathbf{r}}(\mathbf{p}, d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p} - \mathbf{r}, d') + V(d, d')).$$
$$S(\mathbf{p}, d) = \sum_{\mathbf{r}} L_{\mathbf{r}}(\mathbf{p}, d)$$
$$D_{\mathbf{p}} = \arg\min_{d} S(\mathbf{p}, d).$$

SGM with Surface Orientation Prior

[Scharstein, Taniai, Sinha, 3DV 2017]

If we knew the surface slant, we can replace the frontoparallel bias with bias parallel to surface.

Approach:

- Fit surfaces (planes) to an initial depth map.
- Alternatively, integrate a given surface normal map.
- Discretize disparity surface and record pixels where the disparity "changes" (+/- 1).
- During optimization, bias pairwise terms at those pixels.

SGM with Surface Orientation Prior

[Scharstein, Taniai, Sinha, 3DV 2017]

SGM-EP

Low-resolution stereo matching + Plane fitting **SGM-GS** Ground truth oracle

SGM with Surface Orientation Prior

- Pairwise Terms.
 - SGM $V(d, d') = \begin{cases} 0 & \text{if } d = d' \\ P_1 & \text{if } |d - d'| = 1 \\ P_2 & \text{if } |d - d'| \ge 2 \end{cases}$
 - SGM-P (2D Prior)

$$V_S(d_{\mathbf{p}}, d'_{\mathbf{p}}) = V(d_{\mathbf{p}} + \frac{j_{\mathbf{p}}}{j_{\mathbf{p}}}, d'_{\mathbf{p}})$$

 $j_{\mathbf{p}} \in \{-1, 0, +1\}$

SGM-P (3D Prior)

 $V_S(d_{\mathbf{p}}, d'_{\mathbf{p}}) = V(d_{\mathbf{p}} + \frac{j_{\mathbf{p}}(d_{\mathbf{p}})}{j_{\mathbf{p}}(d_{\mathbf{p}})}, d'_{\mathbf{p}})$

Results

Conclusions

- Huge accuracy boost in scenes with slanted untextured surfaces.
- Soft constraint; inaccurate normals don't hurt accuracy.
- 2D prior version adds minimal computational overhead.
- Accurate estimation of surface orientation can be difficult.

Learning to Fuse Proposals in SGM

[Schoenberger, Sinha and Pollefeys, ECCV 2018]

□ SGM steps:

1. $L_{\mathbf{r}}(\mathbf{p}, d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p} - \mathbf{r}, d') + V(d, d')).$ 2. $S(\mathbf{p}, d) = \sum_{\mathbf{r}} L_{\mathbf{r}}(\mathbf{p}, d)$ 3. $D_{\mathbf{p}} = \arg\min_{d} S(\mathbf{p}, d).$

□ Main Idea:

- Replace steps 2 and 3 with a learned predictor.
- The predictor takes disparity maps obtained via scanline optimization and directly estimates the final disparity map.

Learning to Fuse Proposals in SGM

[Schoenberger, Sinha and Pollefeys, ECCV 2018]

Two candidates obtained via scanline optimization

Motivation

"Best of k directions" oracle is significantly better than SGM.

Learning to Fuse Proposals in SGM

[Schoenberger, Sinha and Pollefeys, ECCV 2018]

- Approach (SGM Forest):
 - 1. Run SO to get *k* disparity map proposals
 - 2. At each pixel
 - Construct *per-pixel* feature vector (*see next slide*)
 - Pick best disparity using a random forest classifier
 - Forest outputs probabilities
 - 3. Post-processing using probability map

Computing Per-pixel Features

SGM Forest: Results

		N	liddle	bury 2	2014		KITT	TI 201	5	E	TH3L	0 2017	7
Datacost	\mathbf{Method}	0.5 px	1 px	$_{2px}$	4 px	0.5 px	1 px	$_{2px}$	4 px	0.5 px	1 px	2px	4px
					al	11							
NCC	SGM SGM-F.	69.23 64.00	42.36 37.22			00100	33.79 25.80	20100	0.0 2	32.52 22.48	16.71 11.26	20100	
MC-CNN-fast	SGM SGM-F.	65.82 62.0 4	36.22 32.96			58.48 51.03	31.39 24.05	20100		26.34 17.62	10.50 7.17		
MC-CNN-acrt	SGM SGM-F.		36.08 30.58		16.24 11.62	57.24 46.88	28.55 19.77		5.26 2.97	39.03 27.40	16.34 11.89		6.67 5.52

MC-CNN [Zbontar and Lecun 2015]

SGM-Forest consistently outperforms standard
 SGM and prior SGM variants.

SGM Forest: Ablation Study

	/iew nes	/iew es	60	b0	5px	[%]	[%]	[%]	_	Test Data:
Method	Left View Scanlines	Right V Scanline	Filterin	Training Dataset	bad 0.5	bad 1px	bad 2px	bad 4px	Time [s]	Midd 2014 train se
		\mathbf{all}								
$egin{array}{l} { m SGM} \ { m SGM} - \min_d L_{f r}({f p},d) \ { m SGM} - \min_d { m median}_{f r} L_{f r}({f p},d) \ { m SGM-SVM} \ { m SGM-MLP} \end{array}$	all all all all all			- - M M	65.58 66.79 67.53 60.89 60.49	36.08 38.35 39.75 32.59 32.61	$20.66 \\ 23.32 \\ 23.34 \\ 20.31 \\ 20.25$	$16.24 \\ 18.36 \\ 18.12 \\ 16.16 \\ 16.14$	3.0 3.1 3.2 323.7 21.0	, Training Data:
SGM-Forest	horiz+vert top-down bottom-up all all all all all	•	•	M M M E K M	61.09 61.31 61.38 60.28 60.18 59.89 59.70 59.20	32.69 32.85 32.91 32.15 32.08 30.69 30.61 30.58	18.02 18.31 18.42 17.90 17.69 16.78 16.72 16.57	13.19 13.37 13.43 13.14 12.91 11.67 11.67 11.62	5.7 5.8 5.8 6.1 6.3 8.2 8.2 8.2	E: ETH3D 2017 K: KITTI 2015 M: Midd 2005–06

2014 train set ing Data:

- Excellent cross-dataset generalization.
- Model trained on 2005-06 data shows large accuracy gain on the significantly harder Middlebury 2014 scenes.
- Forest learns abstract patterns in the DSI; not in the input images.

SGM Forest: Benchmark Results

Middlebury 2014 (MC-CNN-acrt)						
Method	non-oc	cl.	all		Time	
LocalExp	5.43%	#1	11.7%	#1	881s	
3DMST	5.92%	#2	12.5%	#3	174s	
MC-CNN+TDSR	6.35%	#2	12.1%	#3	657s	
PMSC	6.71%	#4	13.6%	#4	599s	
LW-CNN	7.04%	#5	17.8%	#15	314s	
MeshStereoExt	7.08%	#6	15.7%	#9	161s	
FEN-D2DRR	7.23%	#7	16.0%	#11	121s	
APAP-Stereo	7.26%	#8	13.7%	#5	131s *	
SGM-Forest	7.37%	#9	15.5%	#8	88s *	
NTDE	7.44%	#10	15.3%	#7	152s	

Middlebury 2014 (MC-CNN-fast)						
Method	non-oc	cl.	all		Time	
LocalExp 3DMST APAP-Stereo FEN-D2DRR	6.52 % 7.08 % 7.53% 7.89%	$\#2 \\ \#3$	$12.1\% \\ 12.9\% \\ 14.3\% \\ 14.1\%$	$#2 \\ #6$	846s 167s 117s 73s	
 MC-CNN-acrt					106s	
\mathbf{SGM} -Forest	11.1%	#19	17.8%	#14	$9s^{*}$	
\dots MC-CNN-fast	11.7%	#21	21.5%	#27	$1\mathrm{s}$	

\mathbf{K}	ITTI	2015	
--------------	------	------	--

Method	Error	Time
CNNF+SGM	3.60% (#9)	71.0s
SGM-Net	3.66% (#11)	67.0s
MC-CNN-acrt	3.89% (#12)	67.0s
SGM-Forest	4.38% (#14)	6.0s
MC-CNN-WS	4.97% (#18)	1.4s
SGM_ROB [17]	6.38% (#27)	0.1s
SGM+C+NL	6.84% (#31)	270.0s
SGM+LDOF	6.84% (#32)	86.0s
SGM+SF	6.84% (#33)	2700.0s
CSCT+SGM+MF	8.24% (#35)	$6.4 \mathrm{ms}$

ETH3D 2017						
Method	non-occl.	all	Time			
SGM-Forest	5.40%	4.96%	5.21s			
SGM_ROB [17]	10.08%	10.77%	0.15s			
MeshStereo	11.94%	11.52%	159.24s			
SPS-Stereo	15.83%	15.04%	1.59s			
ELAS	17.99%	16.72%	0.13s			

* CPU impl.

- #1 (ETH3D), #9 (Middlebury 2014), #14 (KITTI).
- Retains computational efficiency of SGM.

Learning to Align Images using Weak Geometric Supervision

Jing Dong^{1,2} Byron Boots¹ Frank Dellaert¹ Ranveer Chandra² Sudipta N. Sinha²

¹ Georgia Institute of Technology ² Microsoft Research

3DV 2018

Learning Local Feature Descriptors

- Descriptor Learning typically needs supervised learning.
- Training them requires good image correspondences.
- For RGB images, easy to obtain such training data.
- However, not so easy for different imaging modalities (e.g. RGB/NIR).

Goal

- Given two coarsely aligned images of scenes related by an unknown 2D homography, we compute the homography parameters.
- We do not assume any prior knowledge about features or image representations.
- Main Idea: We learn the feature descriptor representation from scratch on the image pair and jointly estimate the 2D homography parameters.

Siamese Networks

- Used for local descriptor learning
- Training set
 - P: true correspondence pairs
 - N: false correspondence pairs

Siamese Networks

- Used for local descriptor learning
- Training set
 - P: true correspondence pairs
 - N: false correspondence pairs
- Contrastive Loss

$$\begin{split} \boldsymbol{L}_{0}(\mathbf{x}, \mathbf{x}'; \theta) &= \|\boldsymbol{f}(\mathbf{x}; \theta) - \boldsymbol{f}(\mathbf{x}'; \theta)\|_{2} \\ \boldsymbol{L}_{1}(\mathbf{x}, \mathbf{x}'; \theta) &= \max(0, \, \mu - \|\boldsymbol{f}(\mathbf{x}; \theta) - \boldsymbol{f}(\mathbf{x}'; \theta)\|_{2}) \\ \operatorname{argmin}_{\theta} \Big(\sum_{i=1}^{|\mathcal{P}|} \boldsymbol{L}_{0}(\mathbf{x}_{i}, \mathbf{x}'_{i}; \theta) + \sum_{j=1}^{|\mathcal{N}|} \boldsymbol{L}_{1}(\mathbf{x}_{j}, \mathbf{x}'_{j}; \theta) \Big) \end{split}$$

Insight

 Visualization of the training loss when severa networks are trained on misaligned image patches (shifted by 2D translational offsets).

Insight

 Visualization of the training loss when severa networks are trained on misaligned image patches (shifted by 2D translational offsets).

- Siamese network can be trained and homography parameters can be updated while minimizing the standard loss.
- Updates to the homography can also computed using backpropagation and SGD.

Our Formulation

 Positive set (true correspondences) re-estimated from current homography estimate

Homography-based image warping $\begin{aligned} & \downarrow & \downarrow \\ Homography parameters \\ & \downarrow & \downarrow \\ L_0(\mathbf{x}; \psi, \theta) = \| f(\mathbf{x}; \theta) - f(\mathbf{w}(\mathbf{x}; \psi); \theta) \|_2 \\ L_1(\mathbf{x}, \mathbf{x}'; \theta) = \max(0, \mu - \| f(\mathbf{x}; \theta) - f(\mathbf{x}'; \theta) \|_2) \end{aligned}$

Our Formulation

 Positive set (true correspondences) re-estimated from current homography estimate

Joint Optimization

$$\theta^*, \psi^* = \operatorname*{argmin}_{\theta, \psi} \left(\sum_{i=1}^{|\mathcal{P}|} \boldsymbol{L}_0(\mathbf{x}_i; \psi, \theta) + \sum_{j=1}^{|\mathcal{N}|} \boldsymbol{L}_1(\mathbf{x}_j, \mathbf{x}'_j; \theta) \right)$$

RGB-NIR image alignment

RGB

overlay

NIR

Result after alignment

Summary of Results

- Learned RGB—NIR descriptor(s) perform better than existing descriptors.
- Competitive with supervised RGB descriptors.
 - Evaluated on HPatches [Balntas+ 2017].
- Robust to medium degree of initial misalignment
 - outperforms Mutual-Information (MI) methods.
- Bootstrapping:
 - Used our method to automatically obtain precise correspondences from multiple pairs.
 - Then, trained a supervised descriptor with improved generalization to new scenes.

Conclusions

□ New extensions of Semi Global Matching (SGM)

- Adding soft precomputed surface orientation priors.
- Using learned strategy to fuse multiple proposals.
- □ Towards aligning images from scratch
 - Jointly trained a Siamese network and estimated a homography to align an image pair.
 - Weakly supervised local descriptor learning.
 - Extend to general scenes in the future.