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d Dense stereo matching
* QOptimization via Semi Global Matching (SGM)
= Two extensions to SGM

d Learning to align images from scratch

= Joint framework for local feature descriptor
learning and image alignment

= Application: RGB / NIR image registration



Semi Global Matching (SGM)
[Hirschmuller 2005]

Stereo Reconstruction

Motivation: Markov Random Field (MRF) inference via
Graph Cuts, BP etc. is too slow and approximate. So
why not approximate even more.

SGM is parallelizable; runs on GPUs and FPGAs.

Widely used: assisted driving, robotics, aerial mapping.



Semi Global Matching (SGM)
[Hirschmuller 2005]
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= Solve several independent 1D scanline optimization
problems; one for each of 4 or 8 directions.

Le(p,d) = Cp(d) + min (Le(p — 1, d) + V(d, d')).



Semi Global Matching (SGM)
[Hirschmuller 2005]
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= Solve several independent 1D scanline optimization
problems; one for each of 4 or 8 directions.

L.(p,d) = Ch(d) + glEi%(Lr(p —r,d)+V(dd)).
= Sum the costs and select min cost disparity at each

pixels. S(p.d) =3 Le(p,d)

D, = arg m‘;n S(p,d).



Two Limitations of SGM

Fronto-parallel bias due to pairwise smoothness term;
leads to errors on slanted textureless surfaces.
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Two Limitations of SGM

Fronto-parallel bias due to pairwise smoothness term;
leads to errors on slanted textureless surfaces.

0 ifd=d \
Py if|d—d'| =2 Tt

Summing up costs and picking the best disparity (last
two steps lack proper justification



SGM with Surface Orientation Prior
[Scharstein, Tanial, Sinha, 3DV 2017]

If we knew the surface slant, we can replace the fronto-
parallel bias with bias parallel to surface.

Approach:

Fit surfaces (planes) to an initial depth map.
Alternatively, integrate a given surface normal map.
Discretize disparity surface and record pixels where the
disparity “changes” (+/- 1).

During optimization, bias pairwise terms at those pixels.



SGM with Surface Orientation Prior
[Scharstein, Tanial, Sinha, 3DV 2017]
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SGM with Surface Orientation Prior

d Pairwise Terms.

" SGM 0 ifd=d
Vid,d)=<¢ P ifld—d|=1
Py, if|d—d|>2
= SGM-P (2D Prior)
Vs (dp, d;;) = V(dp + Jp, d!p)

Jp €{-1,0,+1}
= SGM-P (3D Prior)

VS(dp d;) — V(dp + /“p ({]]) ) d,p)



Results
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Conclusions
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Huge accuracy boost in scenes with slanted untextured surfaces.
Soft constraint; inaccurate normals don’t hurt accuracy.
2D prior version adds minimal computational overhead.

Accurate estimation of surface orientation can be difficult.



Learning to Fuse Proposals in SGM
[Schoenberger, Sinha and Pollefeys, ECCV 2018]

O SGM stebps:

D, = arg mcgn S(p,d).

Q Main Idea:
= Replace steps 2 and 3 with a learned predictor.
= The predictor takes disparity maps obtained via
scanline optimization and directly estimates the
final disparity map.



Learning to Fuse Proposals in SGM
[Schoenberger, Sinha and Pollefeys, ECCV 2018]
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significantly better than SGM.



Learning to Fuse Proposals in SGM
[Schoenberger, Sinha and Pollefeys, ECCV 2018]

Approach (SGM Forest):

Run SO to get k disparity map proposals
At each pixel

- Construct per-pixel feature vector (see next slide)
- Pick best disparity using a random forest classifier

- Forest outputs probabilities

Post-processing using probability map



Computing Per-pixel Features

cost




SGM Forest: Results

Middlebury 2014 KITTI 2015 ETH3D 2017
Datacost Method 0.5px 1px 2px 4px 0.5px 1px 2px 4px 0.5px 1px 2px 4px
all
SGM 69.23 42.36 27.96 22.25 60.59 33.79 15.06 8.34 32.52 16.71 10.66 7.69

NCC SGM-F'. 64.00 37.22 22.85 17.09 52.39 25.80 10.11 4.69 22.48 11.26 6.36 4.35

SGM 65.82 36.22 21.98 17.47 58.48 31.39 13.30 7.02 26.34 10.50 6.13 4.52

MC-CNN-fast SGM-F. 62.04 32.96 18.22 13.16 51.03 24.05 8.73 3.7T8 17.62 7.1T7 3.66 2.51

SGM 65.58 36.08 20.66 16.24 57.24 28.55 9.54 5.26 39.03 16.34 9.14 6.67

MC-CNN-acrt SGM-F. 50.20 30.58 16.57 11.62 46.88 19.77 6.51 2.97 27.40 11.89 7.30 5.52

MC-CNN [Zbontar and Lecun 2015]

» SGM-Forest consistently outperforms standard

SGM and prior SGM variants.



SGM Forest: Ablation Study
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Excellent cross-dataset generalization.
Model trained on 2005-06 data shows large accuracy gain on the
significantly harder Middlebury 2014 scenes.

Forest learns abstract patterns in the DSI; not in the input images.



SGM Forest: Benchmark Results

Middlebury 2014 (MC-CNN-acrt)

Method non-occl. all Time
LocalExp 5.43% #1 11.7% #1 881s
3DMST 5.92% #2 12.5% #3  174s
MC-CNN+4+TDSR 6.35% #2 12.1% #3 657s
PMSC 6.71% #4 13.6% #4 599s
LW-CNN 7.04% #5 17.8% #15 3l14s
MeshStereoExt 7.08% #6 15.7% #9 161s
FEN-D2DRR 7.23% #7 16.0% #11 121s
APAP-Stereo 7.26% #8 13.7% #5 131s
SGM-Forest 7.37% #9 15.5% #8  88s*
NTDE 7.44% #10 15.3% #7 152s
KITTI 2015
Method Error Time
CNNF+5GM 3.60% (£9) 71.0s
SGM-Net 3.66% (#£11) 67.0s
MC-CNN-acrt 3.80% (#£12) G7.0s
SGM-Forest 4.38% (#14) 6.0s*
MC-CNN-WS 4.97T% (#£18) 1.4=
SGM_ROE [17] 6.38% (#27) 0.1s
SGM+C+NL 6.84% (#31) 270.0s
SGM+LDOF 6.84% (#32) 86.0s
SGM+SF 6.84% (#£33) 2700.0s
CSCT+S5GM+MF 8.24% (#35) fi.4ms

Middlebury 2014 (MC-CNN-fast)

Method non-occl. all Time
LocalExp 6.52 % #1 12.1% #1 846s
3DMST 7.08 % #2 12.9% #2 167s
APAP-Stereo 7.53% #3 14.3% #6 117s
FEN-D2DRR 7.89% #4 14.1% #4 73s
MC-CNN-acrt 10.1% #12 19.7% #20 106s

SGM-Forest 11.1% #19 17.8% #14  9s”*

MC-CNN-fast 11.7% #21 21.5% #27 1s

ETH3D 2017

Meoethod non=-occl, all Time
SGM-Forest 5.40% 4.96% 5.21s*
SGM_ROB [lT: 10.08% 10.77T% 0.15=
MeshStereo 11.94% 11.52% 159.24=s
SPS-Stereo 15.83% 15.04% 1.589=
ELAS 17. 995 16.7T2% 0.13=
* )
CPU impl.

= #1 (ETH3D), #9 (Middlebury 2014), #14 (KITTI).

* Retains computational efficiency of SGM.



Learning to Alignh Images using
Weak Geometric Supervision
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Learning Local Feature Descriptors

Descriptor Learning typically needs supervised learning.
Training them requires good image correspondences.
For RGB images, easy to obtain such training data.

However, not so easy for different imaging modalities
(e.g. RGB/NIR).

¥ o
B v €

B e os v i v RN




Goal

" Given two coarsely aligned images of scenes
related by an unknown 2D homography, we
compute the homography parameters.

= We do not assume any prior knowledge about
features or image representations.

= Main Idea: We learn the feature descriptor
representation from scratch on the image pair
and jointly estimate the 2D homography
parameters.




Siamese Networks

= Used for local descriptor learning %
* Training set .
W

= P:true correspondence pairs

= N:false correspondence pairs ﬁ ﬁiiﬁ
X' |=




Siamese Networks

Used for local descriptor learning % ﬁiﬁ

Training set
= P:true correspondence pairs

W
= N:false correspondence pairs ﬁ ﬁiiﬁ
X' |=

Contrastive Loss

Lo(x,x";0) = || f(x:0) — f(x';0)]2
Li(x,x;0) = max(0, p— || f(x;0) — f(x;0)]]2)
P N

argmm(ZLOX;X; 0) +ZL1X X 9)

1=1 71=1




Visualization of the
training loss when severa
networks are trained on
misaligned image patches
(shifted by 2D
translational offsets).

Insight
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Insight

= Visualization of the
training loss when severa

networks are trained on ' .—-——/ ’

misaligned image patches | - ‘#
(shifted by 2D \

translational offsets).

+/- 20 pixels

00000

ll +/- 100 pixels +/- 20 pixels
= Siamese network can be trained and

homography parameters can be updated while
minimizing the standard loss.

= Updates to the homography can also computed
using backpropagation and SGD.



Our Formulation

= Positive set (true correspondences) re-estimated
from current homography estimate

|

LO (X: wa 9)

Ll(Xa X,; 9)

Homography-based image warping
l Homography parameters

v
= [ f(x:0) — f(w(x:9);0)]]

=max(0, u— || f(x;0) — F(x';0)]]2)



Our Formulation

= Positive set (true correspondences) re-estimated
from current homography estimate
Homography-based image warping
l l Homography parameters

v
Lo(x:1,0) = | f(x:0) — fF(w(x;1):0)]|2
Li(x,x;0) =max(0, p— || f(x;0) — f(x":0)]]2)

Joint Optimization
P N

0*, " = argmm(ZLg X;; 1, 0) + Z Lq( Xj,x’-;é?))

1=1 71=1
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Summary of Results

Learned RGB—NIR descriptor(s) perform better than

existing descriptors.

Competitive with supervised RGB descriptors.

— Evaluated on HPatches [Balntas+ 2017].

Robust to medium degree of initial misalignment

— outperforms Mutual-Information (MI) methods.

Bootstrapping:

— Used our method to automatically obtain precise
correspondences from multiple pairs.

— Then, trained a supervised descriptor with
improved generalization to new scenes.



Conclusions

d New extensions of Semi Global Matching (SGM)

Adding soft precomputed surface orientation priors.
Using learned strategy to fuse multiple proposals.

d Towards aligning images from scratch

Jointly trained a Siamese network and estimated a
homography to align an image pair.

Weakly supervised local descriptor learning.
Extend to general scenes in the future.



