Flexible priors for robust dense stereo matching

Sudipta N. Sinha

Microsoft Research

Lines, Planes and Manhattan Models for 3-D Mapping Workshop, IROS 2017

Passive Stereo Matching

Much progress in 20+ years ..

[Okutomi et al. 1996]

[Bleyer & Gelautz 2004]

[Taniai et al. 2017]

Still challenging ...

- Reflections, transparency
- Thin structures
- Untextured regions
- Outdoor weather

Nair+ ICCV 2015

- Iow light, rain, snow ...
- High resolution, real-time computation
- Imperfect calibration

Incorporating priors and constraints

- Priors add robustness in presence of noise, ambiguity
- How to incorporate priors?
 - Traditional tools (MRF inference; energy minimization)
 - Solve stereo in conjunction with other tasks
 - Supervised learning (deep learning)
- Adding structure (or constraints) to model
- Priors must be adaptive, to be useful

Stereo matching with planar priors

[Sinha, Steedly and Szeliski 2009]

Multiple Plane Detection

Structure from motion

3D Line Reconstruction

MRF optimization

Stereo matching with planar priors

IBR using piecewise planar depth maps

IBR using piecewise planar depth maps

Reflective, glossy and transparent surfaces

Scenes with Reflections and Transparency [Sinha+ 2012]

- Model such scenes with two layers; reflections have depth
- Two-layer depth maps; piecewise planarity

Input Image

Depth Map (layer1)

Depth Map (layer2)

Decompose images (color) given the two depth layers

Two-layer stereo matching

- **Two-layer Piecewise Planar Stereo**
 - MRF Labels:
 - Single Planes (opaque)
 - Pair of Planes (opaque + reflective)
 - Energy minimization via graph cuts

- Two-layer Piecewise Planar Stereo
 - MRF Labels:
 - Single Planes (opaque)
 - Pair of Planes (opaque + reflective)
 - Energy minimization via graph cuts

Labeling

- BUT, recovered reflectivity mask often inaccurate
- Still, many open issues in reflection modeling

Stereo matching with planar priors

[Kowdle, Sinha and Szeliski 2012]

- Tackle general scenes
- Local planes as primitives
- Estimate pixel-to-plane labeling
- Learn surface appearance (color) models

Plane label map

Semi-global stereo (SGM)

Find planes

Depth map

Stereo matching with planar priors

[Kowdle, Sinha and Szeliski 2012]

Iterate between:

- Segmentation (graph cuts)
- Learning color distributions (like GrabCut [Rother+ 2004])

Only stereo cues

Appearance + stereo cues

SGM stereo

Microsoft Photosynth2 (2012)

- Interactive, 3D immersive viewer for photos
- MSR SpinMovies prototype

[Kowdle, Sinha and Szeliski 2012]

structure from motion (SfM) reconstruction

[Kowdle, Sinha and Szeliski 2012]

structure from motion (SfM) reconstruction

[Kowdle, Sinha and Szeliski 2012]

structure from motion (SfM) reconstruction

[Kowdle, Sinha and Szeliski 2012]

structure from motion (SfM) reconstruction

[Kowdle, Sinha and Szeliski 2012]

structure from motion (SfM) reconstruction

[Kowdle, Sinha and Szeliski 2012]

structure from motion (SfM) reconstruction

Piecewise planar priors / IBR

- Accurate depth discontinuities and surface normals
 - more critical than accurate depth
- Planes (surfaces) as MRF labels instead of disparities.
 - Strong prior
 - Recovering planes (various ways)
- Restricted label set enforces geometric constraints
 - planarity, parallelism, two-layers ...

Piecewise planar priors / IBR

- Limitations of strong priors
 - Strong bias; Underlying 3d shape lacks detail
- Common cause of failure
 - Proposal generator could miss some surfaces!
- Data-augmentation for deep learning
 - Currently based on image processing + CG rendering
 - Image-based rendering could also be effective !

Middlebury Teddy (2005)

Middlebury v3 (2016) 5-6 Mpixels.

Disney (Kim+ 2013) 10—20 Mpixels. →

- Most successful practical stereo method
- Used in photogrammetry, assisted driving, robotics, ...

Approximates 2D MRF using 1D optimization

along 8 cardinal directions

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

- related to BP, TRW-S [Drory et al. 2014]

Approximates 2D MRF using 1D optimization

along 8 cardinal directions

- rela

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

Evaluates the whole DSI

Inefficient for high-resolution images

Local Plane Sweep (LPS) Stereo [Sinha+ 2014]

- Solve many local plane sweep stereo (LPS) problems
- Generates surface proposals; fuse them into a disparity map

Local Plane Sweep (LPS) Stereo

[Sinha+ 2014]

Local Plane Sweep (LPS) Stereo [Sinha+ 2014]

[Sinha+ 2014] (avg 10 MP) Disney4 40 600 (seconds) 400 300 500 30 **1**,0 PatchMatch % err > 20 SGM-base more accurate than SGM; faster 2nd fastest after ELAS (Geiger+2010) BUT, plane fitting can be unreliable; can give errors

Local Plane Sweep (LPS) Stereo

Approximates 2D MRF using 1D optimization along 8 cardinal directions

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

$$\int 0 \quad \text{if } d = d'$$

Fronto parallel bias

Inaccurate on slanted untextured surfaces

Left image

GT disparities

SGM @ quarter resolution

SGM @ full resolution (6 MP)

SGM-P: SGM with orientation priors

[Scharstein, Taniai, Sinha, 3DV 2017]

- What if we knew the surface slant?
- Replace fronto-parallel bias with bias parallel to surface

Idea:

- Rasterize disparity surface prior (at arbitrary depth)
- Adjust V(d, d') to follow discrete disparity "steps"

SGM-P: 2D orientation priors

SGM-P: 3D orientation priors

vary with disparity

SGM-P: Where do we get priors?

- Matched features + triangulation
- Matched features + plane fitting
- Low-res matching + plane fitting
- Ground truth oracle
- Semantic analysis
- Manhattan-world assumptions

SGM-P: Results

SGM-P: Results

SGM-P: Results

Joint estimation of ...

Stereo + Segmentation (2011)

 Semantic Correspondence + Co-Segmentation (2016)

- Scene Flow (2017)
 - + Ego-motion
 - + Motion Segmentation

Object Stereo [Bleyer+ 2011]

- Joint recovery of disparity and segmentation in both views
- Model: Objects in scene, each have
 - Color model (GMM)
 - Surface model (plane + parallax)
- Assumptions:
 - Color distribution is compact
 - Object surface close to a 3D plane

Object Stereo [Bleyer+ 2011]

Minimize:

E(D, O)

 $= E_{photo}(D) + E_{color}(O) + E_{sm-D}(D) + E_{sm-O}(O) + E_{mdl}(D,O) + \dots$

Object Stereo [Bleyer+ 2011]

Minimize:

E(D, O)

- $= E_{photo}(D) + E_{color}(O) + E_{sm-D}(D) + E_{sm-O}(O) + E_{mdl}(D,O) + \dots$
- Proposal generation
- Merge proposals optimally
 - MRF Fusion moves (non-submodular graph cuts)
 - Quadratic Pseudo Boolean Optimization (QPBO)

Joint Correspondence and Co-segmentation [Taniai, Sinha, Sato 2016]

- Input: Images with semantically related objects (different instances)
- <u>Output:</u> Common object regions and dense correspondence associated with these regions.

Joint Correspondence and Co-segmentation

[Taniai, Sinha, Sato 2016]

Joint Correspondence and Co-segmentation

[Taniai, Sinha, Sato 2016]

Joint Correspondence and Co-segmentation

Fast Multi-frame Stereo Scene Flow with Motion Segmentation Taniai, Sinha, Sato 2017

Input: Stereo Video

Left

Right

Output

Disparity Map

Optical Flow

Moving object segmentation

Fast Multi-frame Stereo Scene Flow with Motion Segmentation Taniai, Sinha, Sato 2017

KITTI 2015 Scene Flow Benchmark (Nov 2016)

Rank	Method	D1-bg	D1-fg	D1-all	D2-bg	D2-fg	D2-all	Fl-bg	Fl-fg	Fl-all	SF-bg	SF-fg	SF-all	Time
1	PRSM [43]	3.02	10.52	4.27	5.13	15.11	6.79	5.33	17.02	7.28	6.61	23.60	9.44	300 s
2	OSF [30]	4.54	12.03	5.79	5.45	19.41	7.77	5.62	22.17	8.37	7.01	28.76	10.63	50 min
3	FSF+MS (ours)	5.72	11.84	6.74	7.57	21.28	9.85	8.48	29.62	12.00	11.17	37.40	15.54	2.7 s
4	CSF [28]	4.57	13.04	5.98	7.92	20.76	10.06	10.40	30.33	13.71	12.21	36.97	16.33	80 s
5	PR-Sceneflow [42]	4.74	13.74	6.24	11.14	20.47	12.69	11.73	27.73	14.39	13.49	33.72	16.85	150 s
8	PCOF + ACTF [10]	6.31	19.24	8.46	19.15	36.27	22.00	14.89	62.42	22.80	25.77	69.35	33.02	0.08 s (GPU)
12	GCSF [8]	11.64	27.11	14.21	32.94	35.77	33.41	47.38	45.08	47.00	52.92	59.11	53.95	2.4 s

200 road scenes with multiple moving objects

Summary

- Piecewise planar stereo
 - Coarse, simplified depth maps
 - Good for Image-based rendering
 - Planes (surfaces) as primitives
 - How about higher-level primitives?
 - 3D CAD models
 - 3D shape templates

Summary

Extending SGM

- Reducing the search space (local plane sweeps)
- Soft orientation prior
- Merit of joint formulations for complementary tasks
 - Stereo + segmentation
 - Semantic correspondence
 - Scene fow from stereoscopic video

Collaborators

Rick Szeliski Facebook

Daniel Scharstein, Middlebury College

Tatsunori Taniai RIKEN, Tokyo

Adarsh Kowdle PerceptivelO

Michael Bleyer Microsoft

Michael Goesele TU Darmstadt

Johannes Kopf Facebook

Drew Steedly Microsoft

Yoichi Sato Univ. of Tokyo

Carsten Rother TU Dresden

Pushmeet Kohli DeepMind