

Privacy-Preserving Image-based Localization

Sudipta N. Sinha

Microsoft Research, Redmond, USA

(joint work with Francesco Pittaluga, Sanjeev Koppal, Sing Bing Kang, Pablo Speciale,

Johannes Schonberger and Marc Pollefeys)

Osaka University seminar talk, October 25, 2019

Image-based Localization

Query Image

3D Point Cloud Maps

Image-based Localization

Arth+ 2009 Irschara+ 2009 Sattler+ 2011 Li+ 2012 Lim+ 2012 Ventura+ 2014 Zeisl+ 2015 Sattler+ 2015 Lynen+ 2015 Kendall+ 2015 Weyand+ 2016

. . .

Image-based Localization

Microsoft HoloLens

Drone Navigation (UAVs)

Google AR Core / Apple ARKit

A crucial task in Augmented Reality (AR) & Robotics applications.

New Privacy Concerns for AR

The next era of computing is upon us. New technology to capture and combine physical spaces with digital content has the potential to profoundly improve the way we see and interact with the world and each other.

As the world's largest companies and organizations race to create the required "AR Cloud" infrastructure to build and fuel these systems, we face unprecedented new challenges and risks to privacy and individual's rights

<section-header>

By Mary Lynne Nielsen, Global Operations and Outreach Program Director, IEEE Standards Association

Recently, I had the opportunity to lead networking sessions at Augmented World Expo (AWE) 2015. I interacted with conference attendees to explore the challenges and opportunities facing the evolution of the Internet. Now in its sixth year, AWE is dedicated to exploring technology that turns ordinary experiences into the extraordinary and empowers people to be better at anything they do in work and life. Nearly 3000 people from the augmented and virtual reality, wearable tech, and Internet of Things spaces attended this year's event.

https://beyondstandards.ieee.org/augmented-reality/augmented-reality-and-its-impact-on-the-internet-security-and-privacy/ https://www.technologyreview.com/s/609143/who-is-thinking-about-security-and-privacy-for-augmented-reality/ https://medium.com/openarcloud/privacy-manifesto-for-ar-cloud-solutions-9507543f50b6

New Privacy Concerns for AR

A View from Franziska B

Who Is Thinking for Augmented

While the technology and a thought has been given to I

October 19, 2017

ugmented-reality technologies overlay digitally generated audio, visual, or haptic feedback on a user's perception of the physical world. A technological dream since the 1960s, AR is now on the cusp of commercial viability: 2016 saw the massive popularity of the AR-based smartphone game Pokemon Go, and AR is appearing in more sophisticated, dedicated devices such as Microsoft's HoloLens and Meta's Meta 2 headset, as well as automotive windshields. These advances are happening quickly, and AR promises exciting new user experiences in domains ranging from training and education to games to everyday life.

.... You might find it a bit creepy that the device and its applications have access to a constant video and audio feed of your surroundings, not to mention that you're being recorded by other people's devices. – *F. Roesner 2017*

The next era of computing is upon us. New technology to capture and combine physical spaces with digital content has the potential to profoundly improve the way we see and interact with the world and each other.

As the world's largest companies and organizations race to create the required "AR Cloud" infrastructure to build and fuel these systems, we face unprecedented new challenges and risks to privacy and individual's rights Augmented Reality and its Impact on the Internet, Security, and Privacy

By Mary Lynne Nielsen, Global Operations and Outreach Program Director, IEEE Standards Association

Recently, I had the opportunity to lead networking sessions at Augmented World Expo (AWE) 2015. Interacted with conference attendees to explore the challenges and opportunities facing the evolution of the Internet. Now in its sixth year, AVE is dedicated to exploring technology that turns ordinary experiences into the extraordinary and empowers people to be better at anything they do in work and life. Nearly 3000 people from the augmented and virtual reality, wearable tech, and Internet of Things spaces attended this year's event.

https://beyondstandards.ieee.org/augmented-reality/augmented-reality-and-its-impact-on-the-internet-security-and-privacy/ https://www.technologyreview.com/s/609143/who-is-thinking-about-security-and-privacy-for-augmented-reality/ https://medium.com/openarcloud/privacy-manifesto-for-ar-cloud-solutions-9507543f50b6

New Privacy Concerns for AR

...... the risk that such (private) data could be collected, analyzed, transmitted and stored in databases or distributed and sold to third parties without the explicit consent of users or worse, unsuspecting citizens that happen to be within sensor range of mixed reality enabled devices. – Jan-Erik Vinje 2018

Outline

- Revealing Scenes by Inverting Structure from Motion Reconstructions
 Francesco Pittaluga, Sanjeev Koppal, Sing Bing Kang and Sudipta N. Sinha
 CVPR 2019
- Privacy-Preserving Image-based Localization
 Pablo Speciale, Johannes L. Schönberger, Sing Bing Kang, Sudipta N. Sinha and Marc Pollefeys
 CVPR 2019
- Privacy-Preserving Image Queries for Camera Localization Pablo Speciale, Johannes L. Schönberger, Sudipta N. Sinha and Marc Pollefeys ICCV 2019

Revealing Scenes by Inverting Structure from Motion Reconstructions

CVPR 2019

Francesco Pittaluga¹

Sanjeev Koppal¹

Sing Bing Kang²

Sudipta N. Sinha²

¹ University of Florida

² Microsoft Research

New Privacy Attack on 3D Maps

3D point cloud map

Our Result

New Privacy Attack on 3D Maps

3D point cloud map Our Result / 3D Point Cloud / 1 / Map Inversion /

Problem Definition: 3D Map Inversion

Specifically, the attacker's goal is to reconstruct a color image of a scene from 2D projections of sparse 3D points and descriptors. We assume that the attacker will do that using a deep neural network.

Previous Work: Single Image Feature Inversion

Original image

Visualization of SIFT Keypoints

Weinzaepfel et al. 2011 Vondrick et al. 2013 Kato & Harada, 2014

Dosovitskiy & Brox, CVPR 2016 Dosovitskiy & Brox, NIPS 2016

Reconstructed Image

3D Map Inversion: Challenges

- Visibility of 3D points unknown
- All feature attributes are not stored; hence unavailable for inversion
 - SIFT keypoint orientation
 - SIFT keypoint scale
 - SIFT descriptor image source
- 3D point cloud distributions are often quite sparse and irregular

3D Map

Projected 3D Points

Visibility Map

U-Net Architecture

- <u>Model</u>: U-Net with skip connections
- <u>Loss:</u> Reconstruction Loss (L1)
- Dataset: SFM pre-processing on
 - MegaDepth (Li and Snavely, 2018)
 - NYU v2 (Silberman et al. 2012)
- Initialization: Random weights

RGB image (output)

nD Input

CoarseNet

(architecture similar to Dosovitskiy and Brox, CVPR 2016)

Final Network Architecture

Reconstruction of Source Video used in Mapping

Novel Views Rendered from a Virtual Camera Path

Results

Input(Depth, SIFT, Color)

Effect of Input Attributes

Effect of Input Attributes

Importance of VisibNet

Importance of VisibNet

output of VisibNet (red: predicted as occluded)

without VisibNet

with VisibNet

Importance of RefineNet

Importance of RefineNet

Input: Depth + SIFT

Effect of Input Sparsity

Visualization of Input Sparsity

Reconstruction Results

Input Sparsity (% of SFM points)

20%

Failures Cases and Artifacts

- Incorrect visibility estimation (foreground objects disappear)
- Straight lines becomes wavy
- Highly occluded scenes are difficult
- Phantom structures and erroneous 3D points in point cloud

Conclusions

- We show that detailed images can be recovered from SFM point clouds, such as those used for camera localization.
- The attack seems seem quite effective even when very little information is available.
- Empirical analysis and ablation studies.

Our work highlights **potential privacy implications as spatial mapping and localization for AR, Robotics** etc. becomes widely adopted in homes, workplaces, other sensitive environments.

Privacy Implications for Camera Localization

Processing on Client

- Server shares map with clients
- Privacy of <u>map data</u> is a concern

Privacy Implications for Camera Localization

- Server shares map with clients
- Privacy of <u>map data</u> is a concern

- Client shares image features with server
- Privacy of <u>query image</u> is a concern

Privacy-Preserving Image-based Localization CVPR 2019

Pablo

Speciale¹

Johannes L. Schönberger¹

Sing Bing Kang²

Sudipta N. Sinha²

Marc Pollefeys^{1,3}

¹ Microsoft Mixed Reality & Al Group, Zurich

² Microsoft Research Redmond ³ ETH Zurich

Goal: Keep the Map Confidential

- 1. Conceal the 3D map; prevent inversion attacks.
- 2. Yet, somehow allow camera pose estimation!

New Map Representation

For each 3D point, pick a randomly oriented 3D line passing through the point.

New Map Representation

- For each 3D point, pick a randomly oriented 3D line passing through the point.
- Then **discard** the 3D point.

Proposed Idea

- For each 3D point, pick a randomly oriented 3D line passing through the point.
- Then discard the 3D point.

Key Insight for Camera Pose Estimation

3D point as intersection of *three planes*

Two reprojection constraints per correspondence

3D point as intersection of *two planes*

One re-projection constraint per correspondence

Camera Pose Estimation

Three "image point"–3D point correspondences

Six "image point"–3D line correspondences

Camera Pose Estimation

- Our minimal problem can be cast as generalized relative pose problem [1].
 [1] Stewenius et al. 2005
- 2. Proposed **several variants** with:
 - Query 3D point cloud (from multiple images),
 - known vertical direction,
 - known scale.

We leverage existing minimal solvers [2-7].
[2] Nister et al. 2007 [3] Lee et al. 2014 [4] Stewenius et al. 2005
[5] Sweeney et al. 2015a [6] Sweeney et al. 2015b [7] Sweeney et al. 2014

3. Most variants are **computationally efficient** and can be used with RANSAC.

New pose estimation method is quite accurate

Multi-Image

- Small loss of accuracy compared to conventional methods
- Some special cases are efficient; suitable for practical impl.

Additional Considerations

- Line Cloud Transformation must be permanent
- What is revealed during localization?
- Can the original 3D points be estimated from the 3D lines?
 - Sometimes. Densely sampled
 3D points indicates where
 surfaces are likely to exist!
 - Solution: subsample the
 3D points, pose estimation
 still works

Privacy-Preserving Image Queries for Camera Localization

ICCV 2019

Pablo Speciale¹

Johannes L. Schönberger¹

Sudipta N.

Sinha²

Marc Pollefeys^{1,3}

¹ Microsoft Mixed Reality & Al Group, Zurich ² Microsoft Research Redmond ³ ETH Zurich

Localization in the Cloud

Microsoft ASA (Azure Spatial Anchors)

Google AR Core (Cloud Anchors)

Privacy Risk in Cloud-based Localization

- Client sends image features to cloud
- Localization runs on cloud server
- Pose is sent back to Client

Privacy Risk in Cloud-based Localization

Adversary on cloud can invert features (recover the image)

Privacy Risk in Cloud-based Localization

Our Goal:

- Hide query features
- Prevent feature inversion on server
- Allow camera pose estimation

Key Insight

Proposed Idea

Query Image

2D Feature Points

2D Feature Lines

- Select a randomly oriented 2D line through each 2D feature point
- Discard the 2D feature points
- Upload 2D features lines + descriptors to the cloud

Camera Pose Estimation

Three 2D *image point* – 3D point correspondences

Six 2D *image line* – 3D point correspondences

Camera Pose Estimation

- Our minimal problem can be cast as **Point-to-Plane problem** [1].
 [1] Ramalingam et al. 2013
- 2. Proposed **several variants** with:
 - known structure (multiple images),
 - known vertical direction,
 - known scale.

We leverage existing minimal solvers [2-7].

[2] Camposeco et al. 2018 [3] Lee et al. 2016 [4] Stewenius et al. 2005

[5] Sweeney et al. 2015a [6] Sweeney et al. 2015b [7] Sweeney et al. 2014

3. Most variants are **computationally efficient** and can be used with RANSAC.

Confidential Query + Confidential Map

- Underlying problem: align 3D lines in query to 3D lines in map
- 6-pt generalized relative pose problem [Stewenius et al. 2005]
- 4-pt generalized relative pose + vertical [Sweeney et al. 2015]

What gets revealed after localization?

What gets revealed after localization?

Query (original image)

Image Inversion (*all* features)

Image Inversion (*only revealed* features)

Results: Localization Accuracy

Results: Internet Photo Collection

Conclusions

- Highlighted new type of privacy issues in AR/Robotics applications; many other open problems ...
- Proposed privacy-preserving camera localization techniques
 - where the map is concealed,
 - where the **query image is concealed**,
 - where both **map and query remain concealed**.
- Our techniques nicely map into known minimal solvers; many of which are accurate and computationally efficient.