Towards exploiting image correspondence for weakly supervised visual recognition

Sudipta N. Sinha
Microsoft Research
Introduction

▪ **Machine learning in computer vision**
 ▪ Major progress on discriminative tasks in supervised settings
 ▪ Possible due to vast human-labeled image datasets

▪ **Collecting ground truth labels for images and video**
 ▪ Mechanical Turk remains a major bottleneck

▪ **Correspondence problems in computer vision**
 ▪ 3D scene reconstruction, image alignment
 ▪ Source of indirect supervision
 ▪ Open problems in unsupervised feature learning
Image Correspondence and 3D Scene Reconstruction

Sparse Pixel Correspondence

Sparse Structure from Motion (SfM)

Dense Reconstruction
Overview

- **Sparse Correspondence and Applications**
 - Place recognition
 - Color Transfer and Enhancing Photos

- **Dense Correspondence Estimation**
 - Stereo Matching on High Resolution Images and Video

- **Joint Correspondence and Cosegmentation**
 - Align images of different but semantically related objects
Leveraging Structure from Motion to Learn Discriminative Codebooks for Landmark Classification

Input: Single image of tourist landmark.

Task: Recognize the location.

Approach:
- Classification (instead of image retrieval)
 - one vs. all classifiers for each location

Main Idea:
- SfM reconstruction of landmark images (source: Flickr/Bing/Google...)
- Extract corresponding image patches from 3D SfM point cloud.
- Exploit correspondences to train discriminative features.

[Bergamo, Sinha, Torresani, CVPR 2013]

“Tyn Church, Prague”
Leveraging Structure from Motion to Learn Discriminative Codebooks for Landmark Classification

Trevi Fountain (3201 imgs)
2337 cams, 57K pts (3 comps)

Tyn Church (3307 imgs)
3307 cams, 298K pts (10 comps)

Piazza Navona (3013 imgs)
1004 cams, 182K pts (8 comps)

Chichen Itza (3434 imgs)
955 cams, 216K pts (19 comps)

[Bergamo, Sinha, Torresani, CVPR 2013]
Leveraging Structure from Motion to Learn Discriminative Codebooks for Landmark Classification

- Random forest-based codebook
- Each track is a unique class
- Feature encoding
 - BoW / VLAD / Fisher Vector

- Track dataset:
 - Millions of tracks
 - Tens of millions of image patches

[Bergamo, Sinha, Torresani, CVPR 2013]
Leveraging Structure from Motion to Learn Discriminative Codebooks for Landmark Classification

[Bergamo, Sinha, Torresani, CVPR 2013]

Ours: 92%
Baseline: 88%

Landmark3D
25 places,
5K test images

Ours: 65%
Baseline: 52%

Landmark-620
620 places
62K test images
Leveraging Structure from Motion to Learn Discriminative Codebooks for Landmark Classification

[Bergamo, Sinha, Torresani, CVPR 2013]

- Ours: 92%
- Baseline: 88%
- Landmark3D
- 25 places, 5K test images
- state of the art top-1 classifier accuracy (in 2013)
- outperformed unsupervised codebooks
- efficient codebook training and encoding schemes
Leveraging Structure from Motion to Learn Discriminative Codebooks for Landmark Classification

[Bergamo, Sinha, Torresani, CVPR 2013]

- Almost automatic landmark classification system
 - Image source: Internet photos (search engines, Flickr etc.)

- Leveraged mature Structure from Motion (SfM) pipeline
 - Filters outliers from Internet image collections.
 - Massive dataset of corresponding image patches.

- Limitations
 - Does not work for non-rigid scenes or objects
 - SfM only work on images of identical scenes
Efficient and Robust Color Consistency for Community Photo Collections

[Park, Tai, Sinha, Kweon, CVPR 2016]

Task 1: Improve color consistency of photos in a collection
Efficient and Robust Color Consistency for Community Photo Collections

[Park, Tai, Sinha, Kweon, CVPR 2016]

Task 2: Transfer the color of one photo to the rest in the collection
Efficient and Robust Color Consistency for Community Photo Collections

[Park, Tai, Sinha, Kweon, CVPR 2016]

Task 2: Transfer the color of one photo to the rest in the collection
Efficient and Robust Color Consistency for Community Photo Collections

[Park, Tai, Sinha, Kweon, CVPR 2016]

Main Idea:

- **Color Correction Model:**
 \[I' = (cI)\gamma \]

- Sparse image correspondences give constraints:
 \[I_i(x_{ij}) = (c_i a_j e_{ij})^{\gamma_i} \]

- Low-rank Matrix Factorization formulation

- Low-Rank Matrix Decomposition Technique [Cabral+ ICCV 2013]
Efficient and Robust Color Consistency for Community Photo Collections

[Park, Tai, Sinha, Kweon, CVPR 2016]
Efficient and Robust Color Consistency for Community Photo Collections

[Park, Tai, Sinha, Kweon, CVPR 2016]

Application: Image Stitching
- Microsoft Research Image Composite Editor (ICE)
- Our correction makes the result more consistent

Photoshop CS6 correction
Using original images
Our correction
Efficient and Robust Color Consistency for Community Photo Collections

[Park, Tai, Sinha, Kweon, CVPR 2016]

Application: 3D reconstruction
- Corrected images produce a better 3D model
Overview

- Sparse Correspondence and Applications
 - Place recognition
 - Color Transfer and Enhancing Photos

- Dense Correspondence Estimation
 - Stereo Matching on High Resolution Images and Video

- Joint Correspondence and Cosegmentation
 - Align images of different but semantically related objects
Efficient High-Resolution Stereo Matching using Local Plane Sweeps

- High Resolution
 - 10+ MPixels
- Large disparity range
- Global stereo methods
 - Evaluate all disparities
 - Impractical!

[Sinha, Scharstein, Szeliski, CVPR 2014]
Efficient High-Resolution Stereo Matching using Local Plane Sweeps

[Sinha, Scharstein, Szeliski, CVPR 2014]

- High Resolution
 - 10+ MPixels

Main Idea

- Solve many local stereo problems – *Local Plane Sweeps (LPS)*
- Generates surface proposals.
- Fuse proposals to obtain disparity map
Efficient High-Resolution Stereo Matching using Local Plane Sweeps

[Sinha, Scharstein, Szeliski, CVPR 2014]

- Match sparse features, robustly identify planes
- Each local problem explores a fraction of the full search space

Here, disparities are out of range
Efficient High-Resolution Stereo Matching using Local Plane Sweeps

[Sinha, Scharstein, Szeliski, CVPR 2014]
Efficient High-Resolution Stereo Matching using Local Plane Sweeps

LPS was the most accurate and 2nd fastest after

- ELAS: Efficient Large-scale Accurate Stereo

[Geiger, Roser, Urtasun, ACCV 2010]
Efficient Stereo Video Processing

Left Camera View

Disparity Map (Depth)

 Detected Moving Objects
Convolutional Neural Networks for Correspondence

Siamese Networks
- Local feature descriptors: [Han+ 2015, Zagoruyko+ 2015, Simo-Serra+ 2015]
- Stereo Matching Cost: [Zbontar and Lecun 2015, 2016, Chen+ 2015, Luo+ 2016]
Convolutional Neural Networks for Correspondence

End-to-end deep models:
FlowNet [Dosovitskiy+ 2015], DispNet [Mayer+ 2016]
Overview

- Sparse Correspondence and Applications
 - Place recognition
 - Color Transfer and Enhancing Photos

- Dense Correspondence Estimation
 - Stereo Matching on High Resolution Images and Video

- Joint Correspondence and Cosegmentation
 - Align images of different but semantically related objects
Semantic Correspondence Estimation

Identical Scene
- Well-studied sub-topics
- Well defined notion of visual similarity

Structure from motion
Multiview stereo
Binocular Stereo
Optical flow

Different but semantically related scenes
- Image appearance could differ a lot
- Much more challenging

SIFT Flow [Liu+ 2008]

Deformable Spatial Pyramid Matching [Kim+ 2013]
Applications

Label Transfer (Face Parsing) [Smith+ 2013]

Depth Transfer [Karsch+ 2012]
Joint Cosegmentation and Dense Semantic Correspondence
[Taniai, Sinha, Sato, CVPR 2016]

Input
Image pair containing semantically related objects but different instances

Output
Find the common region i.e. foreground (binary) mask and the dense optical flow associated with the common region.
Joint Cosegmentation and Dense Semantic Correspondence

[Taniai, Sinha, Sato, CVPR 2016]

- Objects from same but unknown category
- Different scene backgrounds
- Visual appearance, object contours, camera viewpoints are dissimilar
Joint Cosegmentation and Dense Semantic Correspondence [Taniai, Sinha, Sato, CVPR 2016]

- Model: Hierarchical Layered graph of nested image regions (Continuous Label Space)
 - binary (segmentation)
 - 2D similarity transform (flow) (4-dof)
(Spatial regularization)
 - between neighbors
 - between parent-child nodes.

- Energy minimization/Inference
 Local alpha expansions (graph cuts) [Taniai et al. 2014]
Joint Cosegmentation and Dense Semantic Correspondence

\[F(G, f, \alpha) = E_{\text{graph}}(G) + E_{\text{flow}}(f|G) + E_{\text{seg}}(\alpha|G) + E_{\text{reg}}(f, \alpha|G) \]

- structure inferred one layer at a time
- Patch matching with HOG descriptors
- FG/BG color likelihoods

Layered graph

Flow term

Segmentation term

Smoothness terms

- Spatial neighbor edges
- Parent child edges
Joint Cosegmentation and Dense Semantic Correspondence

[TTaniai, Sinha, Sato, CVPR 2016]
Joint Cosegmentation and Dense Semantic Correspondence

[Taniai, Sinha, Sato, CVPR 2016]
Joint Cosegmentation and Dense Semantic Correspondence

[Taniai, Sinha, Sato, CVPR 2016]

- Solving cosegmentation and alignment simultaneously improves accuracy on both tasks.
- Outperforms methods specifically designed for each task.
Future Work: Multi-image semantic correspondence

- Unsupervised or weakly supervised setting
- Visual Object Discovery (find the common objects)
 - bootstrap from easy image pairs?
 - Incremental representation learning
Conclusion

- **Sparse Visual Correspondence**
 - Self-supervision for feature learning
 - Enables automatic label propagation

- **Challenges in Dense Correspondence Estimation**
 - High resolution stereo matching, optic flow
 - Efficient stereo video processing

- **Semantic Correspondence**
 - Unsupervised visual object discovery