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Correspondence Estimation in Computer Vision

Multiview stereoStructure from motion

Binocular Stereo

SIFT Flow (Liu et al. 2008)

Identical Scene

2-view                 n-view 
rigid         vs.       non-rigid
sparse                 dense

Optical flow

Deformable Spatial Pyramid 
Matching (Kim et al. 2013)

Different scenes



More applications

Label transfer (Face parsing)  [Smith et al 2013]

Depth transfer [Karsch et al. 2012]

RGB-D database Query Predicted Depth

Labeled images



Overview

• Dense Correspondence Estimation
• Surface Stereo 

• High Resolution Stereo Matching

• Joint Correspondence and Cosegmentation
• Align different object instances

• Sparse Correspondences and Applications
• Improved place recognition

• Color Consistency in Photo Collections



Surface-based stereo

• Piecewise planar stereo

Birchfield and Tomasi 2001     Furukawa et al. 2008 Sinha et al. 2009

• Surface stereo

Zebedin et al. 2008 Gallup et al. 2010 Bleyer et al. 2010, 2011



Final 
Results

Input 
Images

Multiple View Object Cosegmentation 
using Appearance and Stereo Cues
Kowdle, Sinha and Szeliski (ECCV 2012)



Input images

• Infer what constitutes the foreground object
• Soft segmentation consistency in multiple-views

Multiview Foreground Object Segmentation

Stereo matching

Piecewise planar stereo

• Learn per-plane local color models
• Combine stereo and color cues
• Accurate occlusion boundaries

Depth mapPlane labelsPlane hypotheses

+

Multiple View Object Cosegmentation 
using Appearance and Stereo Cues
Kowdle, Sinha and Szeliski (ECCV 2012)



Multiple View Object Cosegmentation 
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Stereo benchmarks

Middlebury KITTI 

(v2 now offline)

1241 x 376 pixels 

D ≈ 70…150

450 x 376 pixels 

D ≈ 16…60



5 – 6 MPixels

~20 MPixels

Middlebury 
Cones/Teddy

KITTI

Middlebury v3 

Kim et al. 2013 (Disney Research) 



O(P*D) = O(s3) for resolution s,   P: pixels, 

D: disparities

(Most) methods are O(P*D), or O(P*D2); they do not scale

Our Goals:

- Ideally, want O(P)

- Avoid enumerating all disparities

- Optimization should scale

Disparity Search Space
Middlebury (old) KITTI

10 Mdisp. 40 Mdisp.

Middlebury New Disney Mansion

1.5 Gdisp. 20 Gdisp.



Related Work

• Efficient approximate energy minimization
• Semi-global Matching (SGM)          [Hirschmüller 2005]

• Disparity Refinement [Ma 2013, …]

• Avoid exploring the whole DSI
• Coarse-to-fine [long tradition]

• Seed & Grow [Cech & Sara 2007, …]

• PatchMatch stereo [Bleyer et al. 2011]

• ELAS [Geiger et al. 2010]

• Bilateral space edge-aware stereo [Barron et al. 2015]

• Tunable Stereo                                   [Pillai et al. 2016]



Efficient High-Resolution Stereo 
Matching using Local Plane Sweeps

Daniel Scharstein         Richard Szeliski*
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Local Plane Sweep Stereo
• Sparse feature matching; refine vertical disparities

• Generate plane hypotheses (with unknown extents)



Left ImageSparse CorrespondencesPlane Labels

Plane Hypothesis Generation



Local Plane Sweep Stereo
• Sparse feature matching; refine vertical disparities

• Generate plane hypotheses (with unknown extents)

• Perform local plane sweeps (LPS) around planes

- narrow disparity range; SGM optimization



Local Plane Sweeps

Plane 2

Plane 1 Local Plane Sweep disparities

Local Plane Sweep disparities

In-range 
disparities

(ground truth)
Cost Map

d

-3

-2

-1

0

1

2

3



Local Plane Sweep Stereo
• Sparse feature matching; refine vertical disparities

• Generate plane hypotheses (with unknown extents)

• Perform local plane sweeps (LPS) around planes

- narrow disparity range; SGM optimization

Impose Tile structure

- Perform LPS on tiles and propagate planes to adjoining tiles



Local Plane Sweep Stereo
• Sparse feature matching; refine vertical disparities

• Generate plane hypotheses (with unknown extents)

• Perform local plane sweeps (LPS) around planes

- narrow disparity range; SGM optimization

Impose Tile structure

- Perform LPS on tiles and propagate planes to adjoining tiles

• Global optimization 

- Assign pixels to surface proposals

- Approximate energy minimization (via SGM)

- Extend SGM to exploit tile structure and sparse label sets



Global Optimization (via SGM)

SGM 
- same labels at all pixels

LPS – SGM
- Label sets vary tile to tile
- Needs book-keeping at tile

boundaries

• Message passing on 1D paths (8 directions)



Datasets
Disney

Kim et al. 2013, in SIGGRAPH
(4.5 – 20 MP)

New7

2011-2014 Middlebury
(5.1 – 6.0 MP)

Midd9

2003-2006 Middlebury 
(1.4 – 2.7 MP)



• Evaluation:
- PatchMatch Stereo [Bleyer et al. 2011]

- SGM (our impl.)

- SGM-HH [Hirschmüller 2005]

- ELAS [Geiger et al. 2010]

- LPS

• Metric: 
- 1 pixel disparity error at non-occluded pixels.

Experiments
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PatchMatch

SGM-base

SGM-HH

Libelas

LPS

Error vs. runtime, 1.0 pixel threshold

Results – Accuracy vs. Runtime

• LPS is the most accurate followed by SGM
• ELAS is the fastest, LPS is 2nd.

- no GPUs were used.



Left Image Ground Truth      SGM                  ELAS              LPS (ours)



Motorcycle (1 pixel error maps)

MC-CNN-acrt (109 seconds)             err1 = 9.6   



Summary

Advantages
• Avoid exploring full search space

• Runtime independent of disparity range

• Handles weakly textured slanted surfaces

Limitations
• Can miss surfaces not among initial proposals

• No good “stopping criterion” for proposal generation

• Unclear how to incorporate coarse to fine reasoning

Promising Directions
• Avoid monolithic optimization 

• Residual analysis to guide efficient search



Overview

• Dense Correspondence Estimation
• Surface Stereo 

• High Resolution Stereo Matching

• Joint Correspondence and Cosegmentation
• Align different object instances

• Sparse Correspondences and Applications
• Improved place recognition

• Color Consistency in Photo Collections



Overview

• Dense Correspondence Estimation
• Surface Stereo 

• High Resolution Stereo Matching

• Joint Correspondence and Cosegmentation
• Align different object instances

• Sparse Correspondences and Applications
• Improved place recognition

• Color Consistency in Photo Collections



Joint Cosegmentation and Dense 
Correspondence Estimation

Tatsunori Taniai

Univ. of Tokyo

CVPR 2016 (to appear)

Yoichi Sato

Univ. of Tokyo

Sudipta Sinha

Microsoft Research



Problem

Input
Image pair containing semantically related objects
but different instances

Source Target



Problem

Input
Image pair containing semantically related objects
but different instances

Output
Find the common region i.e. foreground (binary) mask
Find the dense flow map associated with foreground.

Mask + FlowSource Target Warped Source 
Image



Dense SIFT descriptors

Image pyramid

Robust visual-similarity matching using dense SIFT

Efficient coarse to fine inference  [Felzenszwalb and Huttenlocher 2004]

• At every pixel
• Same scale
• No rotation

• Estimate and propagate 
from coarse to fine levels

• Search in a limited range
from propagated points

SIFT Flow [Liu+ 2008]



Generalized Deformable Spatial Pyramids
[Hur+15, Kim+13]

- Powerful yet flexible regularization
- Hierarchy is not segmentation/flow aware

Latent
variables

Per-pixel
variables



Image Co-segmentation

- Common region shares similar statistics

- Pixel correspondence in common region not modeled



New Dataset
FG3DCar [1]

[1] Lin et al 2014, “Jointly Optimizing 3D Model Fitting and Fine-Grained Classification”
[2] Rubinstein et al 2013 “Unsupervised Joint Object Discovery and Segmentation in Internet Images”
[3] Hariharan et al 2011, “PASCAL segmentation dataset”

JODS [2] PASCAL [3]

x 195

x 8

x 53

x 39

x 57

x 11

400 pairs

x 11
x 10



New Dataset
FG3DCar [1] JODS [2] PASCAL [3]

Dense ground truth correspondence obtained by interpolating 
sparse key-point matches (annotated by a user). 400 pairs

x 195

x 8

x 53

x 39

x 57

x 11

x 11
x 10



Challenges

- Objects are unknown

- Appearance, shape similarity cues are weak

- Viewpoints, backgrounds differ 

Towards .. 

unsupervised visual object discovery



Our Approach

• Jointly recover flow and segmentation

• Hierarchical model
(Structure) Layered graph of nested image regions
(Continuous Label Space)

- binary (segmentation)
- 2D similarity transform (flow) (4-dof)

(Spatial regularization)
- between neighbors
- between parent-child nodes.

• Energy minimization/Inference
Local alpha expansions (graph cuts) [Taniai et al. 2014]



Hierarchical Model

𝐹 𝐺, 𝑓, 𝛼 = 𝐸𝑔𝑟𝑎𝑝ℎ 𝐺

• Patch matching with HOG descriptors

Flow term

• FG/BG color likelihoods

Segmentation term

…

…

• structure inferred one layer at a time

Layered graph

Layer 1

Layer 2

…

Layer K

+ 𝐸𝑓𝑙𝑜𝑤 𝑓|𝐺 + 𝐸𝑠𝑒𝑔 𝛼|𝐺 + 𝐸𝑟𝑒𝑔 𝑓, 𝛼|𝐺

- Spatial neighbor edges
- Parent child edges

Smoothness terms

…

…

… Pixel grids



Hierarchical flow visualization

Layer 1 Layer 5 Layer 7 Layer 9Input

Graph

Warped

Flow

GT



Foreground / Background cues
Foreground patches are likely to have a good match (low cost)

Background patches will have random matches (usually high cost)

Matching cost

More discriminative

𝐶𝑚𝑖𝑛

Matching cost

Less discriminative𝐶𝑚𝑖𝑛



Foreground / Background cues

Matching Cost Ratio

Geodesic distance from image boundary

Matching cost

𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥

𝑹𝒂𝒕𝒊𝒐 = 𝑪𝒎𝒊𝒏/𝑪𝒎𝒂𝒙

• Construct seeds and initial mask for GrabCut [Rother+04]
• Learn FG/BG color models for each image

Shortest path
distance



Evaluation

Baselines

• Our single layer model

• SIFT Flow                                               [Liu et al. 2008]

• Deformable spatial pyramids (DSP) [Kim et al. 2013]

• DAISY filter flow (DFF)                        [Yang et al. 2014]

• Cosegmentation by composition     [Faktor and Irani 2013]

• Discriminative Clustering                   [Joulin et al. 2010, 2012]

• NRDC …                                                 [HaCohen et al. 2011]

• Cosegmentation by Co-sketch          [Dai et al. 2013]



Flow Accuracy

Our method consistently outperforms all the baselines

Accuracy Metric
- Percentage of flow errors above a threshold (2d distance)



Cosegmentation Accuracy

Our method achieves comparable or better accuracies

Accuracy Metric
- Intersection-over-union ratio

OURS OURS (Single) Faktor + Irani Joulin+



Input Ground truth OURS SIFT Flow DSP

Warped results

Source: FG3DCar

Alignment Results



Warped results

Source: JODS

Alignment Results

Input Ground truth OURS SIFT Flow DSP



Warped results

Source: PASCAL

Alignment Results

Input Ground truth OURS SIFT Flow DSP



Input Ground truth OURS Faktor & Irani Joulin et al.

Source: FG3DCar

Cosegmentation Results



Source: JODS

Cosegmentation Results

Input Ground truth OURS Faktor & Irani Joulin et al.



Source: PASCAL

Cosegmentation Results

Input Ground truth OURS Faktor & Irani Joulin et al.



Future Work

• Try pre-trained ConvNet features

• Add bi-directional flow consistency 

• Use multiple images, add cycle-consistency
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Leveraging Structure from Motion to Learn 
Discriminative Codebooks for Scalable 

Landmark Classification

Alessandro Bergamo*

Amazon

Lorenzo Torresani

Dartmouth College
* while at Dartmouth College

CVPR 2013



SfM from Internet photos



Problem

Goal
A single image from one of k locations. Recognize the location.

Approach
Image categorization (BoW/VLAD/Fisher → linear SVM)
Train a binary classifier for each location

Idea (Discriminative Codebook Learning)
- Each track (n-view correspondence) is a unique class.
- Train a discriminative random forest.
- Use it to quantize/aggregate local descriptors.



• More accurate than k-means (SIFT/DAISY) 
• for both BoW/VLAD representations

Results: top-1 classification accuracy
Landmark3D
(25 places, 5K test images)

Landmark-620
(620 places, 62K test images)

OURS

baseline
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Efficient and Robust Color Consistency 
for Community Photo Collections

Jaesik Park*
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In So Kweon
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Goal
Improve the color consistency of images in a photo collection

Rigid Scenes
Feature matching + Structure from Motion (SfM)

Non-rigid scenes
Feature matching in image pairs
Construct a match graph
Compute maximal cliques [Bron-Kerbosch algorithm (1977)]



Main Idea
Color Correction Model:

Constraints from sparse correspondences .. 

Low-rank Matrix Factorization formulation

=                      +                       +    

Low-Rank Matrix Decomposition Technique 

(Cabral et al. 2013, in ICCV)



Results – ICE SKATER (36 images)

• Our method is faster than [HaCohen et al. 2012] which 

requires dense correspondence.

• Robust formulation; resilient to outliers.



Using our corrected images

Image Stitching

Using original images

Using images corrected with 
Photoshop CS6

Input Images for Microsoft ICE (stitcher)



Using original images Using corrected images

corrected images

original images

Multi-view Stereo



Conclusions

Flow + 
Cosegmentation 

- Joint formulation
- Hierarchical MRF model
- Continuous labels
- Graph cuts

High resolution 
Stereo

- Local plane sweeps
- Reduce search space
- SGM optimization

Color Consistency in
Photo Collections

- Uses sparse feature matches
- Robust matrix factorization
- Efficient color transfer


