Correspondence Estimation in Images: New Techniques and Applications

Sudipta N. Sinha Microsoft Research

Correspondence Estimation in Computer Vision

Different scenes

SIFT Flow (Liu et al. 2008)

Deformable Spatial Pyramid Matching (Kim et al. 2013)

2-viewn-viewrigidvs.non-rigidsparsedense

Structure from motion

Multiview stereo

Binocular Stereo

Optical flow

More applications

Label transfer (Face parsing) [Smith et al 2013]

Labeled images

Depth transfer [Karsch et al. 2012]

RGB-D database

Query

Predicted Depth

Overview

- Dense Correspondence Estimation
 - Surface Stereo
 - High Resolution Stereo Matching
- Joint Correspondence and Cosegmentation
 - Align different object instances
- Sparse Correspondences and Applications
 - Improved place recognition
 - Color Consistency in Photo Collections

Surface-based stereo

• Piecewise planar stereo

Birchfield and Tomasi 2001

Furukawa et al. 2008

Sinha et al. 2009

• Surface stereo

Zebedin et al. 2008

Gallup et al. 2010

Bleyer et al. 2010, 2011

Multiple View Object Cosegmentation using Appearance and Stereo Cues

Kowdle, Sinha and Szeliski (ECCV 2012)

Input Images

Multiple View Object Cosegmentation using Appearance and Stereo Cues

Kowdle, Sinha and Szeliski (ECCV 2012)

Input images

Multiview Foreground Object Segmentation

- Infer what constitutes the foreground object
- Soft segmentation consistency in multiple-views

Multiple View Object Cosegmentation using Appearance and Stereo Cues

Kowdle, Sinha and Szeliski (ECCV 2012)

Overview

- Dense Correspondence Estimation
 - Surface Stereo
 - High Resolution Stereo Matching
- Joint Correspondence and Cosegmentation
 - Align different object instances
- Sparse Correspondences and Applications
 - Improved place recognition
 - Color Consistency in Photo Collections

Overview

- Dense Correspondence Estimation
 - Surface Stereo
 - High Resolution Stereo Matching
- Joint Correspondence and Cosegmentation
 Align different object instances
- Sparse Correspondences and Applications
 - Improved place recognition
 - Color Consistency in Photo Collections

Stereo benchmarks

Middlebury KITTI (v2 now offline)

										stere	• m	visi view «	on.mi MRF	• flow • colo
tereo E	valuati	on • I	Datase	ts • (Code •	Subr	nit							
iddlebury Stere	eo Eval	uation ·	- Versio	on 2										
ew features and ma	ain differe	ences to	version	1.										
ubmit and evalua	te your	own res	sults.											
Open a new wind	ow for ea	ach link												
Error Threshold	= 1		Sort by	nonocc			Sort	by all			Sort b	/ disc		
Error Threshold.			Controly	7			301	7						
				<u> </u>				·						
Algorithm	Avg.	Tsukuba ground truth			Venus Teddy ground truth ground tr			Teddy round truti	th ground truth			Average percent of bad pixels (explanation)		
	Rank	nonocc		<u>disc</u>	nonocc		<u>disc</u>	nonocc		<u>disc</u>	nonocc		<u>disc</u>	
	1 '													
ADCensus [82]	10.9	<u>1.07</u> 16	1.48 13	5.73 19	<u>0.09</u> 2	0.25 9	1.15 2	<u>4.10</u> 13	6.22 6	10.9 11	<u>2.42</u> 14	7.25 11	6.95 15	3.97
ADCensus [82] AdaptingBP [16]	10.9 14.2	<u>1.07</u> 18 <u>1.11</u> 19	1.48 13 1.37 8	5.73 19 5.79 21	<u>0.09</u> 2 <u>0.10</u> 4	0.25 s 0.21 s	1.15 2 1.44 0	<u>4.10</u> 13 <u>4.22</u> 15	6.22 6 7.06 12	10.9 11 11.8 15	<u>2.42</u> 14 <u>2.48</u> 18	7.25 11 7.92 23	6.95 15 7.32 23	3.97
ADCensus [82] AdaptingBP [16] CoopRegion [39]	10.9 14.2 14.8	<u>1.07</u> 18 <u>1.11</u> 19 <u>0.87</u> 4	1.48 13 1.37 8 1.16 1	5.73 19 5.79 21 4.61 4	0.09 2 0.10 4 0.11 5	0.25 9 0.21 8 0.21 5	1.15 2 1.44 8 1.54 10	<u>4.10</u> 13 <u>4.22</u> 15 <u>5.16</u> 28	6.22 6 7.06 12 8.31 16	10.9 11 11.8 15 13.0 21	<u>2.42</u> 14 <u>2.48</u> 18 <u>2.79</u> 35	7.25 11 7.92 23 7.18 10	6.95 15 7.32 23 8.01 40	3.97 4.23 4.41
ADCensus [82] AdaptingBP [16] CoopRegion [39] RDP [87]	10.9 14.2 14.8 19.2	<u>1.07</u> 18 <u>1.11</u> 19 <u>0.87</u> 4 <u>0.97</u> 9	1.48 13 1.37 8 1.16 1 1.39 10	5.73 19 5.79 21 4.61 4 5.00 9	0.09 2 0.10 4 0.11 5 0.21 34	0.25 9 0.21 6 0.21 5 0.38 24	1.15 2 1.44 8 1.54 10 1.89 19	<u>4.10</u> 13 <u>4.22</u> 15 <u>5.16</u> 28 <u>4.84</u> 18	6.22 6 7.06 12 8.31 16 9.94 28	10.9 11 11.8 15 13.0 21 12.6 18	2.42 14 2.48 18 2.79 35 2.53 21	7.25 11 7.92 23 7.18 10 7.69 16	6.95 15 7.32 23 8.01 40 7.38 24	3.97 4.23 4.41 4.57
ADCensus [82] AdaptingBP [16] CoopRegion [39] RDP [87] MultiRBF [129]	10.9 14.2 14.8 19.2 19.6	<u>1.07</u> 18 <u>1.11</u> 19 <u>0.87</u> 4 <u>0.97</u> 9 <u>1.33</u> 41	1.48 13 1.37 8 1.16 1 1.39 10 1.56 17	5.73 19 5.79 21 4.61 4 5.00 9 6.02 28	0.09 2 0.10 4 0.11 5 0.21 34 0.13 8	0.25 9 0.21 6 0.21 5 0.38 24 0.17 2	1.15 2 1.44 6 1.54 10 1.89 19 1.84 18	4.10 13 4.22 15 5.16 28 4.84 18 5.09 24	6.22 6 7.06 12 8.31 16 9.94 28 6.36 7	10.9 11 11.8 15 13.0 21 12.6 18 13.4 25	2.42 14 2.48 18 2.79 35 2.53 21 2.90 42	7.25 11 7.92 23 7.18 10 7.69 18 6.76 5	6.95 15 7.32 23 8.01 40 7.38 24 7.10 20	3.97 4.23 4.41 4.57 4.39
ADCensus 1821 AdaptingBP [16] CoopRegion [39] RDP [87] MultiRBF [129] DoubleBP [34]	10.9 14.2 14.8 19.2 19.6 20.0	1.07 18 1.11 19 0.87 4 0.97 9 1.33 41 0.88 6	1.48 13 1.37 8 1.16 1 1.39 10 1.56 17 1.29 5	5.73 19 5.79 21 4.61 4 5.00 9 6.02 28 4.76 7	0.09 2 0.10 4 0.11 5 0.21 34 0.13 8 0.13 9	0.25 9 0.21 6 0.21 5 0.38 24 0.17 2 0.45 41	1.15 2 1.44 6 1.54 10 1.89 19 1.84 16 1.87 18	4.10 13 4.22 15 5.16 28 4.84 18 5.09 24 3.53 10	6.22 6 7.06 12 8.31 16 9.94 28 6.36 7 8.30 15	10.9 11 11.8 15 13.0 21 12.6 18 13.4 25 9.63 6	2.42 14 2.48 18 2.79 35 2.53 21 2.90 42 2.90 41	7.25 11 7.92 23 7.18 10 7.69 18 6.76 5 8.78 50	6.95 15 7.32 23 8.01 40 7.38 24 7.10 20 7.79 32	3.97 4.23 4.41 4.57 4.39 4.19
ADCensus (82) AdaptingBP (16) CoopRegion (33) RDP (87) MultiRBF (129) DoubleBP (34) MDPM (140)	10.9 14.2 14.8 19.2 19.6 20.0 20.3	1.07 16 1.11 19 0.87 4 0.97 9 1.33 41 0.88 6 1.15 20	1.48 13 1.37 8 1.16 1 1.39 10 1.56 17 1.29 5 1.59 20	5.73 19 5.79 21 4.61 4 5.00 9 6.02 28 4.76 7 6.14 31	0.09 2 0.10 4 0.11 5 0.21 34 0.13 8 0.13 9 0.14 14	0.25 9 0.21 6 0.21 5 0.38 24 0.17 2 0.45 41 0.36 22	1.15 2 1.44 8 1.54 10 1.89 19 1.84 18 1.87 18 1.52 9	4.10 13 4.22 15 5.16 28 4.84 18 5.09 24 3.53 10 3.79 11	6.22 6 7.06 12 8.31 16 9.94 28 6.36 7 8.30 15 5.78 4	10.9 11 11.8 15 13.0 21 12.6 18 13.4 25 9.63 6 11.1 13	2.42 14 2.48 18 2.79 35 2.53 21 2.90 42 2.90 41 2.74 29	7.25 11 7.92 23 7.18 10 7.69 16 6.76 5 8.78 50 8.38 38	6.95 15 7.32 23 8.01 40 7.38 24 7.10 20 7.79 32 7.91 35	3.97 4.23 4.41 4.57 4.39 4.19 4.22

450 x 376 pixels D ≈ 16...60

The KITTI Vision Benchmark Suite and Toyota Technology A project of Kartsruhe Institute of Technology and Toyota Technological Institute at Chicago home setup stereo flow odometry object tracking road raw data submit results jobs

Andreas Geiger (MPI Tübingen) | Philip Lenz (KIT) | Christoph Stiller (KIT) | Raquel Urtasun (University of Toronto)

Stereo Evaluation

Rank	Method	Setting	Code	Out-Noc	Out-All	Avg-Noc	Avg-All	Density	Runtime	Environment	Compare
1	SceneFlow	予派		2.98 %	3.97 %	0.8 px	1.0 px	100.00 %	35 s	1 core @ 3.5 Ghz (C/C++)	
Anonymo	us submission									1	
2	PCBP-SS			3.40 %	4.72 %	0.8 px	1.0 px	100.00 %	5 min	4 cores @ 2.5 Ghz (Matlab + C/C++)	
<. Yamag	uchi, D. McAllester	and R. Urta	sun: <u>Rob</u>	ust Monocular	Epipolar F	low Estimatio	n. CVPR 20	13.		A	
3	gtRF-SS			3.83 %	4.59 %	0.9 px	1.0 px	100.00 %	1 min	1 core @ 2.5 Ghz (Matlab + C/C++)	
Anonymo	us submission					******				h	
4	StereoSLIC			3.92 %	5.11 %	0.9 px	1.0 px	99.89 %	2.3 s	1 core @ 3.0 Ghz (C/C++)	
C. Yamag	juchi, D. McAllester	and R. Urta	sun: <u>Rob</u>	ust Monocular	Epipolar F	low Estimatio	n. CVPR 20	13.		A	
5	PR-Sf+E	30		4.02 %	4.87 %	0.9 px	1.0 px	100.00 %	200 s	4 cores @ 3.0 Ghz (Matlab + C/C++)	
I. Vogel,	S. Roth and K. Sch	nindler: Piec	ewise Rig	id Scene Flow	. Internatio	nal Conferen	ce on Comp	uter Vision (ICCV) 2013.	lannan an a	
6	PCBP			4.04 %	5.37 %	0.9 DX	1.1 px	100.00 %	5 min	4 cores @ 2.5 Ghz (Matlab + C/C++)	

1241 x 376 pixels D ≈ 70...150

~20 MPixels

Disparity Search Space

Middlebury (old)	KITTI
10 Mdisp.	40 Mdisp.
Middlebury New	Disney Mansion

 $O(P^*D) = O(s^3)$ for resolution s, P: pixels,

D: disparities

(Most) methods are O(P*D), or O(P*D²); they do not scale Our Goals:

- Ideally, want O(P)
- Avoid enumerating all disparities
- Optimization should scale

Related Work

- Efficient approximate energy minimization
 - Semi-global Matching (SGM)
- Disparity Refinement
- Avoid exploring the whole DSI
 - Coarse-to-fine
 - Seed & Grow
 - PatchMatch stereo
 - ELAS

[Ma 2013, ...]

[Hirschmüller 2005]

- [long tradition]
- [Cech & Sara 2007, ...]
- [Bleyer et al. 2011]
- [Geiger et al. 2010]
- Bilateral space edge-aware stereo [Barron et al. 2015]
- Tunable Stereo

[Pillai et al. 2016]

Efficient High-Resolution Stereo Matching using Local Plane Sweeps

CVPR 2014

Sudipta Sinha Microsoft Research **Daniel Scharstein** Middlebury College **Richard Szeliski^{*}** Facebook

* while at Microsoft Research

Local Plane Sweep Stereo

- Sparse feature matching; refine vertical disparities
- Generate plane hypotheses (with unknown extents)

Plane Hypothesis Generation

Sparae Charter proagences

Local Plane Sweep Stereo

- Sparse feature matching; refine vertical disparities
- Generate plane hypotheses (with unknown extents)
- Perform local plane sweeps (LPS) around planes
 narrow disparity range; SGM optimization

Local Plane Sweeps

Plane 1

Local Plane Sweep disparities

d -3 -1 0 1 2 3

Local Plane Sweep Stereo

- Sparse feature matching; refine vertical disparities
- Generate plane hypotheses (with unknown extents)
- Perform local plane sweeps (LPS) around planes
- narrow disparity range; SGM optimization

Impose Tile structure

- Perform LPS on tiles and propagate planes to adjoining tiles

Local Plane Sweep Stereo

- Sparse feature matching; refine vertical disparities
- Generate plane hypotheses (with unknown extents)
- Perform local plane sweeps (LPS) around planes
- narrow disparity range; SGM optimization

Impose Tile structure

- Perform LPS on tiles and propagate planes to adjoining tiles
- Global optimization
 - Assign pixels to surface proposals
 - Approximate energy minimization (via SGM)
 - Extend SGM to exploit tile structure and sparse label sets

Global Optimization (via SGM)

• Message passing on 1D paths (8 directions)

SGM - same labels at all pixels

LPS – SGM

- Label sets vary tile to tile
- Needs book-keeping at tile boundaries

Datasets

Midd9

<u>New7</u>

2003-2006 Middlebury (1.4 – 2.7 MP) 2011-2014 Middlebury (5.1 – 6.0 MP)

<u>Disney</u>

Kim et al. 2013, in SIGGRAPH (4.5 – 20 MP)

Experiments

- Evaluation:
- PatchMatch Stereo [Bleyer et al. 2011]
- SGM (our impl.)
- SGM-HH [Hirschmüller 2005]
- ELAS [Geiger et al. 2010]
- LPS
- Metric:
 - 1 pixel disparity error at non-occluded pixels.

Results – Accuracy vs. Runtime

Error vs. runtime, 1.0 pixel threshold

- LPS is the most accurate followed by SGM
- ELAS is the fastest, LPS is 2nd.
 no GPUs were used.

Left Image

Pilano

Ground Truth

SGM

ELAS

LPS (ours)

Motorcycle (1 pixel error maps)

MC-CNN-acrt (109 seconds)

LPS (9.6 seconds)

Libelas (5.0 seconds)

SGM-base (268 seconds)

err1 = 34.4

PatchMatch (3330 seconds)

err1 = 33.8

Summary

Advantages

- Avoid exploring full search space
- Runtime independent of disparity range
- Handles weakly textured slanted surfaces

Limitations

- Can miss surfaces not among initial proposals
- No good "stopping criterion" for proposal generation
- Unclear how to incorporate coarse to fine reasoning

Promising Directions

- Avoid monolithic optimization
- Residual analysis to guide efficient search

Overview

- Dense Correspondence Estimation
 - Surface Stereo
 - High Resolution Stereo Matching
- Joint Correspondence and Cosegmentation
 - Align different object instances
- Sparse Correspondences and Applications
 - Improved place recognition
 - Color Consistency in Photo Collections

Overview

- Dense Correspondence Estimation
 - Surface Stereo
 - High Resolution Stereo Matching

Joint Correspondence and Cosegmentation

- Align different object instances
- Sparse Correspondences and Applications
 - Improved place recognition
 - Color Consistency in Photo Collections

Joint Cosegmentation and Dense Correspondence Estimation

CVPR 2016 (to appear)

Tatsunori Taniai Univ. of Tokyo

Sudipta Sinha Microsoft Research **Yoichi Sato** Univ. of Tokyo

Problem

<u>Input</u>

Image pair containing semantically related objects but different instances

Source

Target

Problem

<u>Input</u>

Image pair containing semantically related objects but different instances

Image

<u>Output</u>

Find the common region i.e. *foreground (binary) mask* Find the dense *flow map associated with foreground.*

SIFT Flow [Liu+ 2008]

Robust visual-similarity matching using dense SIFT

Efficient coarse to fine inference [Felzenszwalb and Huttenlocher 2004]

- Estimate and propagate from coarse to fine levels
- Search in a limited range from propagated points

Generalized Deformable Spatial Pyramids

[Hur+15, Kim+13]

- Powerful yet flexible regularization
- Hierarchy is not segmentation/flow aware

Image Co-segmentation

- Common region shares similar statistics
- Pixel correspondence in common region not modeled

New Dataset

FG3DCar^[1]

JODS^[2]

PASCAL^[3]

400 pairs

[1] Lin et al 2014, "Jointly Optimizing 3D Model Fitting and Fine-Grained Classification"

[2] Rubinstein et al 2013 "Unsupervised Joint Object Discovery and Segmentation in Internet Images"

[3] Hariharan et al 2011, "PASCAL segmentation dataset"

New Dataset

FG3DCar^[1]

Dense ground truth correspondence obtained by interpolating sparse key-point matches (annotated by a user).

JODS [2]

x 8

x 53

x 11

x 39

PASCAL^[3]

400 pairs

Challenges

- Objects are unknown
- Appearance, shape similarity cues are weak
- Viewpoints, backgrounds differ

Towards ..

unsupervised visual object discovery

Our Approach

- Jointly recover flow and segmentation
- Hierarchical model

(Structure) Layered graph of nested image regions (Continuous Label Space)

- binary (segmentation)
- 2D similarity transform (flow) (4-dof)

(Spatial regularization)

- between neighbors
- between parent-child nodes.
- Energy minimization/Inference

Local alpha expansions (graph cuts) [Taniai et al. 2014]

Hierarchical Model

- structure inferred one layer at a time
- Patch matching with HOG descriptors
- FG/BG color likelihoods

- Spatial neighbor edges
- Parent child edges

Hierarchical flow visualization

Foreground / Background cues

Foreground patches are likely to have a good match (low cost)

More discriminative

Background patches will have random matches (usually high cost)

Foreground / Background cues

Matching Cost Ratio

$$Ratio = C_{min}/C_{max}$$

Geodesic distance from image boundary

- Construct seeds and initial mask for GrabCut [Rother+04]
- Learn FG/BG color models for each image

Evaluation

Baselines

- Our single layer model
- SIFT Flow

[Liu et al. 2008]

- Deformable spatial pyramids (DSP) [Kim et al. 2013]
- DAISY filter flow (DFF)
- Cosegmentation by composition
- Discriminative Clustering
- NRDC ...
- Cosegmentation by Co-sketch

[Yang et al. 2014]

[Faktor and Irani 2013]

[Joulin et al. 2010, 2012]

[HaCohen et al. 2011]

[Dai et al. 2013]

Flow Accuracy

Accuracy Metric

- Percentage of flow errors above a threshold (2d distance)

Our method consistently outperforms all the baselines

Cosegmentation Accuracy

Accuracy Metric

- Intersection-over-union ratio

Our method achieves comparable or better accuracies

Alignment Results

Source: FG3DCar

Alignment Results

Source: JODS

Alignment Results

Source: PASCAL

Cosegmentation Results

Source: FG3DCar

Cosegmentation Results

Source: JODS

Cosegmentation Results

Source: PASCAL

Future Work

- Try pre-trained ConvNet features
- Add bi-directional flow consistency
- Use multiple images, add cycle-consistency

Overview

- Dense Correspondence Estimation
 - Surface Stereo
 - High Resolution Stereo Matching
- Joint Correspondence and Cosegmentation
 - Align different object instances
- Sparse Correspondences and Applications
 - Improved place recognition
 - Color Consistency in Photo Collections

Overview

- Dense Correspondence Estimation
 - Surface Stereo
 - High Resolution Stereo Matching
- Joint Correspondence and Cosegmentation
 Align different object instances
- Sparse Correspondences and Applications
 - Improved place recognition
 - Color Consistency in Photo Collections

Leveraging Structure from Motion to Learn Discriminative Codebooks for Scalable Landmark Classification

CVPR 2013

Alessandro Bergamo* Amazon

* while at Dartmouth College

Lorenzo Torresani Dartmouth College

SfM from Internet photos

Problem

<u>Goal</u>

A single image from one of **k** locations. Recognize the location.

Approach

Image categorization (BoW/VLAD/Fisher \rightarrow linear SVM) Train a binary classifier for each location

Idea (Discriminative Codebook Learning)

- Each track (n-view correspondence) is a unique class.
- Train a discriminative random forest.
- Use it to quantize/aggregate local descriptors.

Results: top-1 classification accuracy

Landmark-620

(620 places, 62K test images) (25 places, 5K test images) **OURS** 0.6 0.9 baseline 0.5 0.85 8.0 Accuracy Accuracy 8.0 + HKM-BoW 0.7 ORFT-BoW 0.2 +HKM-BoW 📥 RFT_BoW_IWA 0.65 -ERC-BoW HKM–BoW (raw data) 0.1 🕂 RFT–BoW ★ IL-BoW 0.6¹ 256 256 512 16K 512 1024 2K 8K 16K 1024 2K 4K 8K 4K dimensionality of the descriptor dimensionality of the descriptor

- More accurate than k-means (SIFT/DAISY)
- for both BoW/VLAD representations

Landmark3D

Overview

- Dense Correspondence Estimation
 - Surface Stereo
 - High Resolution Stereo Matching
- Joint Correspondence and Cosegmentation
 Align different object instances
- Sparse Correspondences and Applications
 Improved place recognition
 - Color Consistency in Photo Collections

Efficient and Robust Color Consistency for Community Photo Collections

CVPR 2016 (to appear)

Jaesik Park^{*} Intel Labs Yu-Wing Tai* SenseTime In So Kweon KAIST

* while at KAIST

Goal

Improve the color consistency of images in a photo collection

Rigid Scenes

Feature matching + Structure from Motion (SfM)

Non-rigid scenes

Feature matching in image pairs

Construct a match graph

Compute maximal cliques [Bron-Kerbosch algorithm (1977)]

Main Idea

Color Correction Model: $I' = (cI)^{\gamma}$

Constraints from sparse correspondences ..

$$I_i(x_{ij}) = (c_i a_j e_{ij})^{\gamma_i}$$

Low-rank Matrix Factorization formulation

Low-Rank Matrix Decomposition Technique (Cabral et al. 2013, in ICCV)

Results – ICE SKATER (36 images)

- Our method is faster than [HaCohen et al. 2012] which requires dense correspondence.
- Robust formulation; resilient to outliers.

Image Stitching

Input Images for Microsoft ICE (stitcher)

Using original images

Using images corrected with Photoshop CS6

Using our corrected images

Multi-view Stereo

original images

corrected images

Using original images

Using corrected images

Conclusions

High resolution Stereo

- Local plane sweeps
- Reduce search space
- SGM optimization

Flow + Cosegmentation

- Joint formulation
- Hierarchical MRF model
- Continuous labels
- Graph cuts

Color Consistency in Photo Collections

- Uses sparse feature matches
- Robust matrix factorization
- Efficient color transfer