Recent Progress in Stereo Matching, Scene Flow and Object Pose Estimation

Sudipta Sinha Microsoft Research

Talk at Georgia Tech, August 24, 2018

Structure from Motion

Stereo Matching

Image-based Rendering

Photometric Stereo

Scene Flow

Stereo Matching

Photometric Stereo

Scene Flow

Computer Vision on or with UAVs

HoloLens Research Mode

https://docs.microsoft.com/en-us/windows/mixed-reality/cvpr-2018

- On-device API
- Gives access to
 - audio
 - 6-dof pose
 - surface mesh
 - raw video streams
 - 4x greyscale cameras
 - Color camera
 - ToF Depth & IR Reflectivity (near, far)

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
 - Learning to Fuse Proposals
- Stereo Scene Flow with Motion Segmentation
- Camera Trajectory Planning for Aerial 3D Scanning
- Deep 6-DoF Object Pose Prediction

Stereo Matching

Stereo Matching

Solved Problem?

Still difficult ...

Fore-shortening

Specular surfaces

Transparency, reflections

Different lighting

High Dynamic range

Untextured slanted surfaces

 Top methods still inaccurate in corner cases and infeasible for real-time, low power systems

Stereo benchmarks

Middlebury

(2005)

Disney Research (2013)

(10—20 Mpixels)

ETH3D (2017)

Piecewise Planar Stereo

[Sinha, Steedly, Szeliski 2009]

Multiple Plane Detection

3D Line Reconstruction

Discrete Optimization (Graph Cuts)

Novel Rendered View

Piecewise Planar Stereo <u>Revisited</u>

[Kowdle, Sinha, Szeliski 2012]

Labeling Problems and Markov Random Fields

• Find a per-pixel label (disparity map) *D*, by minimizing energy:

$$E(D) = E_{data}(D) + E_{smooth}(D)$$
$$= \sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$$

- Data and smoothness terms encode matching costs and prior
- Discrete or continuous labels
- Inference: Graph Cuts, Belief Propagation, PatchMatch, ...

[Boykov+ 1998; Kolmogorov and Zabih 2002; Felzenszwalb and Huttenlocher 2004; Bleyer+ 2011; Besse+ 2012]

New Trends

- Learning the matching cost:
 - MC-CNN [Zbontar + Lecun 2015], Chen+ 2015, Luo+ 2016
- Continuous MRFs:
 - Piecewise Planar Stereo [Taniai+ 2017] (Top rank on Middlebury v3 since 2017)
- Deep stereo regression (end to end training)
 - FlowNet [Dosovitskiy+ 2015]
 - DispNet [Mayer+ 2016]
- Unsupervised learning
 - Left-Right Consistency Check → training samples, iterate ... [Zhou+ ICCV 2017]

New Trends

Return of "Correlation"

- DispNetCorr [Mayer+ 2016]
- GC-Net [Kendall+ 2017]

New Trends

Kendall+ 2017

- Return of "Correlation"
 - DispNetCorr [Mayer+ 2016]
 - GC-Net [Kendall+ 2017]
- Return of "CRFs"
 - SGM-Nets [Seki and Pollefeys 2017]
 - Hybrid CNN-CRF [Knobelreiter+ 2017

Knobelreiter+ 2017

Analysis of Benchmarks (~June 2018)

Mouseover the table cells to see the produced disparity map. Clicking a cell will blink the ground truth for comparison. To change the table type, click the links below. For more information, please see the description of new features.

Submit and evaluate your own results. See snapshots of previous results. See the evaluation v.2 (no longer active).

Set: test dense test sparse training dense training sparse

Metric: bad 0.5 bad 1.0 bad 2.0 bad 4.0 avgerr rms A50 A90 A95 A99 time time/MP time/GD Mask: nonocc all

plot selected show invalid Reset sort Reference list

	bed 2.0 (%)			Weight															
Date	Name	F	tes	Avg	Austr	AustrP	Bicyc2	Class	ClassE	Compu	Crusa	CrusaP	Djemb	DjembL	Hoops	Livgrm	Nkuba	Plants	Stairs
		- 1			nd 290	nt 290	nt 250	nd: 610	nd: 610	MP: 1.5 nd: 256	MP 5.5 nd 800	MP 5.5 nd 800	MP: 57 of: 320	nd 320	nd: 410	nd: 320	nd: 570	nd 320	nd 450
		- 1			im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1
					nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc
-98		1		₽ ₽	- B B	88	-96	40	-88	- 88	<u>48</u>	-88	<u>48</u>	-88	<u>48</u>	<u>48</u>	48	98	88
03/06/18	NOSS	용.	н	5.04 1	3.57 2	2.84 3	3.99 2	1.93 1	5.15 1	3.34 1	3.32 1	3.15 1	2.32 2	8.55 2	7.45 1	7.06 2	12.5 2	5.20 3	10.0 7
06/22/17	LocalExp	割	н	5.43 2	3.65 3	2.87 4	2.98 1	1.99 2	5.59 2	3.37 2	3.48 3	3.35 2	2.05 1	10.3 3	9,75 3	8.57 \$	14.4 10	5.40 4	9.55 \$
01/24/17	3DMST	8	н	5.92 3	3.71 4	2.78 2	4.75 4	2.72 5	7.36 5	4.28 3	3.44 2	3.76 3	2.35 3	12.6 4	11.5 \$	8.56 4	14.0 *	5.35 \$	8.87 4
03/10/17	MC-CNN+TDSR	ŝ	F	6.35 4	5.45 13	4.45 17	6.80 18	3.46 14	10.7 12	6.05 10	5.01 9	5.19 9	2.627	10.8 4	9.62 2	6.59 1	11.4 1	6.01 10	7.04 1
05/12/16	PMSC	ġ.	н	6.716	3.46 1	2.68 1	6.19 14	2.54 3	6.92 3	4.54 4	3.96 4	4.04 5	2.37 4	13.1 10	12.3 6	12.27	16.2 18	5.88 9	10.8 9
10/19/16	LW-CNN	율	н	7.04 6	4.65 7	3.95 9	5.30 9	2.63 4	11.2 16	5.417	4.32 6	4.22 6	2.43 6	12.2 7	13.4 9	13.6 15	14.8 13	4.72 1	12.0 14
04/12/16	MeshStereoExt	8	н	7.087	4.41 6	3.98 11	5.40 10	3.17 10	10.0 7	6.23 12	4.62 7	4.77 8	3.49 19	12.7 9	12.47	10.4 •	14.5 11	7.80 17	8.85 3
10/12/17	FEN-D2DRR	ġ.	н	7.23 8	4.68 8	4.11 13	5.03 6	3.03 2	8.42 4	6.05 10	4.90 8	5.32 10	3.20 16	11.5 4	14.1 11	13.4 14	13.9 7	5.06 2	14.3 19
05/28/16	APAP-Stereo	8	н	7.26 9	5.43 12	4.91 23	5.11 8	5.17 19	21.6 27	6.99 15	4.31 5	4.23 7	3.24 18	14.3 13	9.78 4	7.32 3	13.4 \$	6.30 11	8.46 2
03/11/18	SGM-Forest	돰	н	7.37 10	4.71 9	3.69 \$	4.93 5	3.18 11	11,1 14	5.37 5	5.57 11	5.81 13	2.65 \$	14.5 14	13.2 *	13.1 11	14.8 14	5.63 7	11.2 12
01/19/16	NTDE	8	н	7.44 11	5.72 17	4.36 16	5.92 12	2.837	10.4 9	5.71 8	5.30 to	5.54 11	2.40 \$	13.5 11	14.1 11	12.6 1	13.9 4	6.39 12	12.2 15
02/28/18	FDR	ŝ	н	7.69 12	5.41 11	4.22 14	4.20 3	2.73 6	10.2 8	5.40 6	6.40 12	5.76 12	4.72 26	11.2 5	15.4 16	13.4 13	16.5 3	5.22 4	13.0 17
08/28/15	i 🗹 MC-CNN-acrt	8	н	8.08 13	5.59 16	4.55 20	5.96 13	2.837	11.4 17	5.81 9	8.32 19	8.89 19	2.71 9	16.3 16	14.1 13	13.2 12	13.0 4	6.40 13	11.1 11
11/03/15	MC-CNN+RBS	율	н	8.42 14	6.05 19	5.16 27	6.24 15	3.27 12	11.1 14	6.36 13	8.87 18	9.83 25	3.21 17	15.1 15	15.9 18	12.8 10	13.5 6	7.04 15	9.99 6
09/13/16	SNP-RSM	ŝ	н	8.75 15	5.46 14	4.85 21	6.50 17	3.37 13	10.4 10	7.31 17	8.73 17	9.37 22	3.58 20	14.3 12	14.7 14	14.9 18	12.8 3	10.1 22	10.8 10
12/11/17	OVOD	器	н	8.87 14	4.74 10	3.64 7	5.51 11	4.82 18	12.8 20	6.51 14	9.91 21	9.96 26	3.13 13	16.6 17	14.8 15	14.1 16	15.4 14	6.92 14	13.2 18
01/21/16	MCCNN_Layout	8	н	8.94 17	5.53 15	5.63 32	5.06 7	3.59 15	12.6 12	7.23 14	7.53 15	8.86 18	5.79 35	23.0 22	13.6 10	15.0 19	14.7 12	5.85 *	10.4 =
01/26/16	MC-CNN-fst	8	н	9.47 🛤	7.35 24	5.07 26	7.18 20	4.71 17	16.8 24	8.47 20	7.37 14	6.97 14	2.82 10	20.7 21	17.4 21	15.4 21	15.1 15	7.90 14	12.6 16

1			-	\sim		_	Envirocement	Compare
	K I I		•	1	11	5	1 core (8 2.8 offic (C/C++)	
	[]]]		_	- U	1	J	Hvidia OTX Titan Ap	
							QPU 🖶 Z. 5 Ohz (Pythen)	
4	kavdas	2.54	1 1411	2.36.8	100.00 N	0.22 s	moletia OTX 1080 TI	0
	ettignal Se	2.10	2.64.8	1.56.9	100.00 M	0.25 1	wide tites = (Python)	
6	Hestiet-12	2.25	8 3.40 8	1.44.8	100.00 %	0.12.5	Wida Titan x (Pascal)	
Z, Lian	g, Y. Reg, Y. Gas and H. Liu	Learning for Disperts St.	ineia fra	di Festure G	aniano attivi	populat alloc	712 (X609 3017)	
	SADTREES.			2.47.8	100.00 8	0.05	Solution of the second second	U
	Retter	2.9	8 5.25 %	2,52.8	120.00 %	0.1 s	Writhe Titten X (Pescel)	
	peepsterep	2.14	4.72.8	2.59.8	100.00 M	0.93	Titlan x	
10	307	2.23	8 4.55 8	2.61.8	100.00 8	0.381	Hendla OTX 1080 TI	
11	SBb	SEE 2.4	1 R 2.55 R	2.67 8	120.00 N	0.47 1	midia GTX 1080	- 2017
+2	PSWHet ROB	2.25	a 5,24 a	2.76.9	100.00 ₩	0.411	1 core @ 2.6 Ghz (Python)	
13	DeepStereo	2.18		2,77 8	100.00 8	0.93	Titian x	0
54	207(03510100	2.27	8 5.50 8	2.80 8	100.00 N	1.51	Titlan x	0
	00.007	1.00		7.67.8	100.00 8		mode otx titlet x	
A New	Ail, H. Martironymi, S. Dango	sta, P. Henry, E. Genned	A ladeach	and A. Dry: 5	nd to-God Laws	ward Geometry	and Cantest for Deep Garwy Regension. Proceedings of the in	deviational .
14	LineSterns	2.70	4.453	1.99.8	100.00 H	0.42 6	Hvidia OTX Titan Xp	0
X. Song	K Day, H. Huard L. Farg	Education & Content in	treg stell Read	had Pyramid	Network Ity Sta	we building a	No preprint a XV-1802.25195 2018.	
17	ACR	Not. J. Free and W. Shr.	IR SC.R.	1.03 %	100.00 N	49.2 S	mindia GTX Tittan X 9. ETT Conference on Computer Vision and Patient Recognition	CVPD 2018
18	RecRestiet	2.4	A 6.30 B	3.10.8	100.00 M	31	@ (mindia GTX Tittan X)	
19	addition	2.70	8 1.26 8	3,15.8	100.00 %	0.151	Hondia GYX 1080 TI	
20	DER	2.6	8.04.8	3.18.8	100.00 H	0.41	mindia QTX Titan X	
5. Gele	ris and N. Kernalakis: Detect	Replace, Rolling Group 5	instand had	In these Forr Phys	of White Labority	g. althe preprint	arity: 1812.0470 30%	
21	HS-GARS	2.63	18 5.548	1,21.8	100.00 N	0.9 1	skridia QTX Titan X	
22	strystereonet.	code 2.61	8 5.99.9	3.22.8	100.00 M	0.6 5	INVIOLA TITLIN XD	
203		POTEN ALLER PRACE	and at one at	of Passessie		auto accounts	and some state state in the state state of the state	
23	£285-Hef	2.6/	8 6.42.9	3.25 8	100.00 N	0.5 5	Hvidia GTX 1080 (Python)	
24	SSWECK	3.16	4.11.8	3.32.9	100.00 8	0.09 5	1 core (§ 2.5 Ghz (C/C++)	
28	812	2.63	8 6.55 8	3.52.8	100.00 N	0.98	1 core @ 2.5 Ghz (C/C++)	
28	Stownet	2.70	6.92.8	3.40%	100.00 %	0.8 1	P100	
25	L-RESAULT	code 2.72	8 0.95 2	2.42.8	100.00 H	49.1	1 core 9 1.5 ofc (C/C++)	
4.250	ed and L. Well Instant Sta	ren Retching, with Consta	al Maria Se	tooris and it	elactive Loss	No prepriet an	er: (701.30165.2016.	
28.	Diplata vil	code 3.00	IN 5.56 B	3.43 R	100.00 M	265 S	+8 cores @ 2.0 GHz (watlab + C/C++) and Pataets Recognition (CMP) 2015.	
29	DSDHAM	2.84	8 6.60 8	3,50 8	100.00 H	0.35 1	revida ots titan X	
30	voo-one	3.0		1.54.8	100.00 N	0.31 s	GPU @ 2.5 GPU (C/C++)	
21	CHHR+50m	2.78	18 7.65 %	1.60 %	100.00 %	711	TESLA HADC	
f. Dat	g and 3, Web: Earliemental	Northles or Learning No.	e fastures tar	Offective Der	or Multers C	II Tranactors	at Insign Proceeding 2218.	
32	PSCP and N. Polsifery: Parch Lane	Cathlens Prelician	8 8,74 B	3.61.9 Ity Map. Brit	120.00 H	08.5 In: Carlerence I	HVIDE OTX TITAL X	
33	20M-1485	2.00	8 8.84 8	3.00 %	100.00 M	871	Titao X	
A. 541	and B. Poliefayo 200 Mater	Sect Gubei Nathan Wi	t Rezal Netwo	the case of	9eT.			
34	wdDF-Cres	3.55	4.01 8	3.76.8	100.00 N	0.42.4	Midla QTX Titlen X	
- 25	<u>QPHET</u>	3.9	8 2.67 8	3,67.%	100.00 N	0,1 5	1 core @ 2.5 Gbz (C/C++)	G
38 1.200	Inc. CNN-acre for and Y. LACar: Speno Ref	code 2.84	N 8.88 N	3.69 R	100.00 N	67 1 Patches Scherth	Invigia (91X Titan X (CulliA, Lash/Torch?) liad to JHCR -	

- Group A and B have no methods in common!
- Group A: MC-CNN variants; no other "deep learning" technique!
- Group B: U-nets, ResNet, 3D convolutions, RNNs, End to end learning, ...

Summary

- Dataset bias exists.
- Middlebury stereo pairs from different scenes; makes learning difficult.
- Need a better way to evaluate "deep stereo regression".

Must train <u>one</u> model on combined training set and submit to all benchmarks!

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
 - Learning to Fuse Proposals
- Stereo Scene Flow with Motion Segmentation
- Camera Trajectory Planning for Aerial 3D Scanning
- Deep 6-DoF Object Pose Prediction

Semi Global Matching [Hirschmüller 2005]

- MRF inference (Graph Cuts, BP, ..) too slow
- SGM: Approximate even more; use heuristics
 - Widely used: assisted driving, robotics, aerial mapping …
 - Runs on GPUs, FPGAs …

Scanline Optimization (1D)

Minimize:

$$E(D) = \sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$$

- Consider the above problem on a 1D scanline.
- Compute an aggregated matching cost

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d') + V(d,d')).$$

• $\mathbf{r} = (1, 0)$: start at leftmost pixel, scan left

Semi Global Matching (SGM)

- For 8 directions
 - calculate aggregated costs

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d') + V(d,d')).$$

Finally, sum the costs and select per-pixel minima.

$$S(\mathbf{p}, d) = \sum_{\mathbf{r}} L_{\mathbf{r}}(\mathbf{p}, d)$$
$$D_{\mathbf{p}} = \arg\min_{d} S(\mathbf{p}, d).$$

Semi Global Matching (SGM)

Semi Global Matching (SGM)

Approximates 2D MRF using 1D optimization

along 8 cardinal directions

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

Related to Belief Propagation, TRW-S
[Drory et al. 2014]

Semi Global Stereo Matching with Surface Orientation Priors

Daniel Scharstein

Middlebury College

Tatsunori Taniai

RIKEN, Tokyo

3DV 2017

Sudipta Sinha

Microsoft Research

Semi Global Matching [Hirschmüller 2005]

Approximates 2D MRF using 1D optimization along 8 cardinal directions

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

$$\int 0 \quad \text{if } d = d'$$

Fronto parallel bias

Inaccurate on slanted untextured surfaces

SGM^{*} (quarter resolution)

SGM^{*} (full resolution (6 MP))

* Confidence measure used to prune uncertain pixels (black holes)

Ground Truth

SGM-P: SGM with orientation priors

[Scharstein, Taniai, Sinha, 3DV 2017]

What if we knew the surface slant?

- Rasterize disparity surface prior (at arbitrary depth)
- Adjust V(d, d') to follow discrete disparity "steps"

SGM-P: 2D orientation priors

SGM-P: 3D orientation priors

vary with disparity

SGM-P: Where do we get priors?

- Matched features + triangulation
- Matched features + plane fitting
- Low-res matching + plane fitting
- Ground truth oracle
- Semantic analysis
- Manhattan-world assumptions

SGM-P: Results

SGM-P: Results

SGM-P: Results

Learning to Fuse Proposals from Multiple Scanline Optimizations in Semi-Global Matching

Johannes Schönberger ETH Zurich

Sudipta Sinha Microsoft Research

Marc Pollefeys Microsoft / ETH Zurich

ECCV 2018 (to appear)
Semi Global Matching (SGM)

For 8 directions

- calculate aggregated costs

$$L_{\mathbf{r}}(\mathbf{p}, d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p} - \mathbf{r}, d') + V(d, d')).$$

Finally, sum the costs and select per-pixel minima. \rightarrow Ad-hoc step

$$S(\mathbf{p}, d) = \sum_{\mathbf{r}} L_{\mathbf{r}}(\mathbf{p}, d)$$

$$D_{\mathbf{p}} = \arg\min_{d} S(\mathbf{p}, d).$$

Main Idea

- Treat the 1D SO results as candidate solutions
- We propose to learn a function to select the best proposal
 - SGM-Forest is based on random forest classifiers

Main Idea

- "Best of k directions" oracle gives an upper bound
- Large gap between SGM and oracle
- SGM-Forest closes the gap a fair bit

Analyzing the Scanline Optimization Costs

Х

- C: unary cost volume
- L: scanline opt. cost volume
- Horizontal slices for the green scanline

Analyzing the Scanline Optimization Costs

- C: unary cost volume
- L: scanline opt. cost volume
- Horizontal slices for the green scanline

Proposed Method

Feature vector:

 $f = [\mathsf{d}_1, \, \mathsf{d}_2, \, \mathsf{d}_3, \, \mathsf{C}_{11}, \, \mathsf{C}_{12}, \, \mathsf{C}_{13}, \, \mathsf{C}_{21}, \, \mathsf{C}_{22}, \, \mathsf{C}_{23}, \, \mathsf{C}_{31}, \, \mathsf{C}_{32}, \, \mathsf{C}_{33}]$

Proposed Method

- 1. Run 1D Scanline Opt. to obtain *k* disparity map proposals
- 2. At each pixel
 - Construct k² + k dimensional feature vector
 - Do Random Forest Inference
 - outputs probabilities for selecting k proposals
 - Select best disparity
 - Refine disparity
 - Compute probability-weighted average of inlier disparities.
- 3. Post-processing (using probability image)
 - At each pixel *p*, find neighboring pixels with high probability and color similar to that of *p*; then compute the median filter.

Ablation study: Middlebury 2014 training set (15 pairs) used for evaluation

Method	Left View Scanlines	Right View Scanlines	Filtering	Training Dataset	bad 0.5px [%]	bad 1px [%]	bad 2 px [%]	bad 4px [%]	Time [s]
		all							
$\begin{array}{l} \text{SGM} \\ \text{SGM} - \min_d L_{\mathbf{r}}(\mathbf{p}, d) \\ \text{SGM} - \min_d \operatorname{median}_{\mathbf{r}} L_{\mathbf{r}}(\mathbf{p}, d) \\ \text{SGM-SVM} \\ \text{SGM-MLP} \end{array}$	all all all all all			- - M M	65.58 66.79 67.53 60.89 60.49	36.08 38.35 39.75 32.59 32.61	$20.66 \\ 23.32 \\ 23.34 \\ 20.31 \\ 20.25$	16.24 18.36 18.12 16.16 16.14	3.0 3.1 3.2 323.7 21.0
SGM-Forest	horiz+vert top-down bottom-up all all all all all	:		M M M E K M	61.09 61.31 61.38 60.28 60.18 59.89 59.70 59.20	32.69 32.85 32.91 32.15 32.08 30.69 30.61 30.58	18.02 18.31 18.42 17.90 17.69 16.78 16.72 16.57	13.19 13.37 13.43 13.14 12.91 11.67 11.67 11.62	5.7 5.8 5.8 6.1 6.3 8.2 8.2 8.2 8.2

M: Midd 2005, K: KITTI, E: ETH3D

Ablation study: Middlebury 2014 training set (15 pairs) used for evaluation

- Good cross-domain generalization; low dataset bias
- Random forest inference: fast (on CPU); parallelizable
- SGM Forest retains computational benefits of SGM

$SGM - mm_d L_r(\mathbf{p}, a)$	an	-	00.79	38.30	23.32	18.30	3.1
$SGM - min_d median_r L_r(\mathbf{p}, d)$	all	-	67.53	39.75	23.34	18.12	3.2
SGM-SVM	all	M	60.89	32.59	20.31	16.16	323.7
$\operatorname{SGM-MLP}$	\mathbf{all}	Μ	60.49	32.61	20.25	16.14	21.0
	horiz+vert top-down bottom-up	M M	$61.09 \\ 61.31 \\ 61.38$	32.69 32.85 32.01	18.02 18.31 18.42	13.19 13.37 13.43	5.7 5.8
SGM-Forest	all all all	 M M E	60.28 60.18 59.89	32.15 32.08 30.69	$17.90 \\ 17.69 \\ 16.78$	$13.14 \\ 12.91 \\ 11.67$	$6.1 \\ 6.3 \\ 8.2$
	all all	K M	59.70 59.20	30.61 30.58	16.72 16.57	11.67 11.62	$8.2 \\ 8.2$

M: Midd 2005, K: KITTI, E: ETH3D

		Ν	liddle	bury 2	2014		KITTI 2015			ETH3D 2017			
Datacost	\mathbf{Method}	0.5 px	1 px	$_{2px}$	4 px	0.5px	1 px	$_{2px}$	4 px	0.5 px	1 px	2px	4px
					a	11							
NCC	SGM	69.23	42.36	27.96	22.25	60.59	33.79	15.06	8.34	32.52	16.71	10.66	7.69
	SGM-F.	64.00	37.22	22.85	17.09	52.39	25.80	10.11	4.69	22.48	11.26	6.36	4.35
MC-CNN-fast	SGM	65.82	36.22	21.98	17.47	58.48	31.39	13.30	7.02	26.34	10.50	6.13	4.52
	SGM-F.	62.0 4	32.96	18.22	13.16	51.03	24.05	8.73	3.78	17.62	7.17	3.66	2.51
MC-CNN-acrt	SGM	65.58	36.08	20.66	16.24	57.24	28.55	9.54	5.26	39.03	16.34	9.14	6.67
	SGM-F.	59.20	30.58	16.57	11.62	46.88	19.77	6.51	2.97	27.40	11.89	7.30	5.52

		Ν	liddle	bury 2	2014	KITTI 2015			ETH3D 2017				
Datacost	Method	0.5 px	1 px	2px	4 px	0.5px	1 px	2px	4 px	0.5px	1 px	2px	4px
					а	11							
NCC	SGM	69.23	42.36	27.96	22.25	60.59	33.79	15.06	8.34	32.52	16.71	10.66	7.69
	SGM-F.	64.00	37.22	22.85	17.09	52.39	25.80	10.11	4.69	22.48	11.26	6.36	4.35
MC-CNN-fast	SGM	65.82	36.22	21.98	17.47	58.48	31.39	13.30	7.02	26.34	10.50	6.13	4.52
	SGM-F.	62.04	32.96	18.22	13.16	51.03	24.05	8.73	3.78	17.62	7.17	3.66	2.51
MC-CNN-acrt	SGM	65.58	36.08	20.66	16.24	57.24	28.55	9.54	5.26	39.03	16.34	9.14	6.67
	SGM-F.	59.20	30.58	16.57	11.62	46.88	19.77	6.51	2.97	27.40	11.89	7.30	5.52

[Zbontar and Lecun 2015]

- Matching cost (unary): NCC, MC-CNN (-fast, -acrt)
- SGM-Forest outperforms SGM in all cases

Benchmark Results

Middlebury 2014 (MC-CNN-actt)											
Method	non-oc	cl.	all		Time						
LocalExp	5.43%	#1	11.7%	#1	881s						
3DMST	5.92%	#2	12.5%	#3	174s						
MC-CNN+TDSR	6.35%	#2	12.1%	#3	657s						
PMSC	6.71%	#4	13.6%	#4	599s						
LW-CNN	7.04%	#5	17.8%	#15	314s						
MeshStereoExt	7.08%	#6	15.7%	#9	161s						
FEN-D2DRR	7.23%	#7	16.0%	#11	121s						
APAP-Stereo	7.26%	#8	13.7%	#5	131s						
SGM-Forest	7.37%	#9	15.5%	#8	88s						
NTDE	7.44%	#10	15.3%	#7	152s						

Middleb	oury 20)14 (N	AC-CNI	N-fast)
Method	non-oc	ccl.	all		Time
LocalExp	6.52 %	#1	12.1%	#1	846s
3DMST	7.08 %	#2	12.9%	#2	167s
APAP-Stereo	7.53%	#3	14.3%	#6	117s
FEN-D2DRR	7.89%	#4	14.1%	#4	73s
 MC-CNN-acrt	10.1%	#12	19.7%	#20	106s
 SGM-Forest	11.1%	#19	17.8%	#14	9 s
 MC-CNN-fast	11.7%	#21	21.5%	#27	1s

KITTI 2015

	\mathbf{Method}	Error	\mathbf{Time}
	CNNF+SGM	3.60% (#9)	71.0s
	$\operatorname{SGM-Net}$	3.66% (#11)	67.0s
	MC-CNN-acrt	3.89% (#12)	67.0s
⇒	${f SGM}$ -Forest	4.38% (#14)	6.0s
	MC-CNN-WS	4.97% (#18)	1.4s
\$	SGM_ROB [2]	6.38% (#27)	0.1s
÷	SGM+C+NL	6.84% (#31)	270.0s
	SGM+LDOF	6.84% (#32)	86.0s
1	SGM+SF	6.84% (#33)	2700.0s
₽	$\rm CSCT+SGM+MF$	8.24% (#35)	$6.4 \mathrm{ms}$

	ETH3D 203	17	
Method	non-occl.	all	\mathbf{Time}
SGM-Forest SGM_ROB [2] MeshStereo SPS-Stereo ELAS	5.40% 10.08% 11.94% 15.83% 17.99%	$\begin{array}{c} \textbf{4.96\%}\\ 10.77\%\\ 11.52\%\\ 15.04\%\\ 16.72\%\end{array}$	$5.21s \\ 0.15s \\ 159.24s \\ 1.59s \\ 0.13s$

Benchmark Results

	Middlebu	ry 2014 (MC	C-CNN-acrt)	Middle	bury 2014 (MC-CNN-fas	t)
	Method	non-occl.	all	Time	Method	non-occl.	all	Time
	LocalExp 3DMST MC-CNN+TDSR	$5.43\% \ \#1$ $5.92\% \ \#2$ $6.35\% \ \#2$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 881 \mathrm{s} \\ 174 \mathrm{s} \\ 657 \mathrm{s} \end{array}$	LocalExp 3DMST APAP-Stereo	6.52 % #1 7.08 % #2 7.53% #3	$\begin{array}{cccc} 12.1\% & \#1 \\ 12.9\% & \#2 \\ 14.3\% & \#6 \end{array}$	$\begin{array}{c} 846 \mathrm{s} \\ 167 \mathrm{s} \\ 117 \mathrm{s} \end{array}$
-	#1 on E ⁻	TH3D						
	#8 on M	idd 20	14, #1	4 on	KITTI			
•	Significa	antly ou	utperfo	orm al	ll previou	s SGN	l variar	nts
	SGM-R	OB: [H	irschn	nuller	20081 im	pl.		

$\Rightarrow \mathbf{SGM} extsf{-}\mathbf{Forest}$	4.38% (#14)	6.0s
MC-CNN-WS	$4.97\% \ (\#18)$	1.4s
\Rightarrow SGM_ROB [2]	6.38%~(#27)	0.1s
SGM+C+NL	6.84%~(#31)	270.0s
$_{\rm SGM+LDOF}$	6.84%~(#32)	86.0s
SGM+SF	6.84%~(#33)	$2700.0 \mathrm{s}$
\Rightarrow CSCT+SGM+MF	8.24% (#35)	$6.4 \mathrm{ms}$

SGIVI-Forest	5.40%	4.90%	5.21s
\Rightarrow SGM_ROB [2]	10.08%	10.77%	0.15s
MeshStereo	11.94%	11.52%	159.24s
SPS-Stereo	15.83%	15.04%	1.59s
ELAS	17.99%	16.72%	0.13s

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
 - Learning to Fuse Proposals
- Stereo Scene Flow with Motion Segmentation
- Camera Trajectory Planning for Aerial 3D Scanning
- Deep 6-DoF Object Pose Prediction

Fast Multi-frame Stereo Scene Flow with Motion Segmentation

Tatsunori Taniai RIKEN, Tokyo

Sudipta Sinha Microsoft Research

Yoicho Sato Univ. of Tokyo

CVPR 2017

Multi-frame Stereo Scene Flow

- Stereo video from moving stereo camera rig (calibrated)
- Scene Flow equivalent to stereo matching and optical flow estimation

Application

Object scene flow for autonomous vehicles Menze and Geiger 2015

Action recognition by dense trajectories Wang+ 2011

Depth and flow sequences are useful in many applications

Motivation

Efficient, unified method for

- Stereo
- Optical Flow
- Moving object segmentation
- Visual Odometry (Camera ego-motion)

Disparity Map

Optical Flow

Moving Object Segmentation

Main Idea: Dominant Rigid Scene Assumption

- Most of the scene is rigid; hence, camera motion determines the *rigid optical flow*.
- Given *rigid flow map*, only find regions with moving objects and recompute their flow.

Proposed Approach

Results – KITTI 2015 Scene Flow Benchmark (Nov 2016)

Rank	Method	D1-bg	D1-fg	D1-all	D2-bg	D2-fg	D2-all	Fl-bg	Fl-fg	Fl-all	SF-bg	SF-fg	SF-all	Time
1	PRSM [43]	3.02	10.52	4.27	5.13	15.11	6.79	5.33	17.02	7.28	6.61	23.60	9.44	300 s
2	OSF [30]	4.54	12.03	5.79	5.45	19.41	7.77	5.62	22.17	8.37	7.01	28.76	10.63	50 min
3	FSF+MS (ours)	5.72	11.84	6.74	7.57	21.28	9.85	8.48	29.62	12.00	11.17	37.40	15.54	2.7 s
4	CSF [28]	4.57	13.04	5.98	7.92	20.76	10.06	10.40	30.33	13.71	12.21	36.97	16.33	80 s
5	PR-Sceneflow [42]	4.74	13.74	6.24	11.14	20.47	12.69	11.73	27.73	14.39	13.49	33.72	16.85	150 s
8	PCOF + ACTF [10]	6.31	19.24	8.46	19.15	36.27	22.00	14.89	62.42	22.80	25.77	69.35	33.02	0.08 s (GPU)
12	GCSF [8]	11.64	27.11	14.21	32.94	35.77	33.41	47.38	45.08	47.00	52.92	59.11	53.95	2.4 s

200 road scenes with multiple moving objects

Rank	SF-all	Time
1	9.44	300 s
2	10.63	<u>50 min</u>
3	15.54	2.7 s
4	16.33	80 s
5	16.85	150 s
8	33.02	0.08 s (GPU)
12	53.95	2.4 s

Results – KITTI 2015 Scene Flow Benchmark (Nov 2016)

200 scenes from KITTI benchmark

2.72 sec per frame

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Camera Trajectory Planning for Aerial 3D Scanning
- Deep 6-DoF Object Pose Prediction

Submodular Trajectory Optimization for Aerial 3D Scanning

ICCV 2017

Mike Roberts^{1,2} Debadeepta Dey² Anh Truong³ Sudipta Sinha² Shital Shah² Ashish Kapoor² Pat Hanrahan¹ Neel Joshi²

¹Stanford University ²Microsoft Research ³Adobe Research

Related Work

- View selection [Hornung+ 2011]
 - First, acquire dense imagery
 - Later, select subset & process
- Next-best-view planning
 - Information-gain maximization [Isler+ 2016]
 - Robotic RGB-D 3D scanning [Wu+ 2014]
 - No travel budget constraints
- Real-time Drone view planning

[Mostegel+ 2016, Hepp+ 2018]

Greedy technique; heuristic-based

Planning the camera path

- 1. Fly an easy-to-generate trajectory
- 2. Compute coarse 3D model (SFM \rightarrow MVS \rightarrow mesh)
- 3. Plan optimized trajectory
- 4. Fly the computed trajectory
- 5. Run SFM + MVS on all images

Heuristics Known to Work Well

We prefer images with

- diverging viewing angles
- close-up views
- fronto parallel views of surfaces

Coverage Measure

For a surface point S observed from multiple cameras, we define coverage as the area of the union of all the blue disks on a hemisphere.

Coverage Measure

Similarly, we define coverage for multiple surface points observed from multiple camera viewpoints.

Coverage Measure

Submodular Function!

Similarly, we define coverage for multiple surface points observed from multiple camera viewpoints.

Planning Optimized Trajectories

Nodes = possible camera locations; edge weights = pairwise Euclidean distances. Sub-problems:

- 1. Solve optimal set of orientations; ignoring path constraints
- 2. Then, find path by solving a graph orienteering problem

Solving for Camera Orientations

- Coverage set function is submodular
 - Adding new elements to an existing set gives diminishing returns
- Cardinality and Mutual Exclusion Constraint
 - Select exactly one look-at vector at each position
- Constrained submodular maximization
 - Always, pick the next best element with the most marginal reward
 - Greedy algorithm; good theoretical approximation guarantee

Solving for Camera Positions

- Graph Orienteering Problem
 - NP-Hard; related to TSP and Knapsack

- Find short paths that let you collect most rewards (at nodes).
- In standard orienteering, rewards are additive.
- But, our reward function is submodular, not additive!
- Hence, we must solve a submodular orienteering problem.

Solving for Camera Positions

- Choose a good sub-gradient (additive approximation) for our submodular function
- This gives us a regular orienteering problem
- Solve a integer linear program (ILP)

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Camera Trajectory Planning for Aerial 3D Scanning
- Deep 6-DoF Object Pose Prediction

Real-Time Seamless Single Shot 6D Object Pose Prediction

Bugra Tekin EPFL

Sudipta Sinha

Microsoft Research

Pascal Fua

EPFL

CVPR 2018
3D Recognition, 2D-3D Model Alignment

Given a RGB image (with known intrinsics), recognize the object instances and predict their 3D position and orientation within the scene.

Feature-based (RGB, RGB-D)

Coordinate Regression CNNs

- Lowe 2001
- Rothganger+ 2005
- Lepetit+ 2005
- Lai+ 2010
- Hinterstoisser+ 2012

 Brachmann+ 2014, 2016

- Rad + Lepetit 2017
- Kehl+ 2017
- Xiang+ 2017
- Tekin+ 2018
- Oberweger+ 2018

Texture-less Object 6D Pose Datasets

LINEMOD [2012] 15 objects

T-LESS [2017] 30 objects

CB-VIDEO [2018 21 objects

Deep 6-dof object pose estimation

BB8 [Rad and Lepetit 2017]

SSD-6D [Kehl+ 2017]

image
$$\swarrow$$
 $CNN_1(\sim SSD)$ \rightleftharpoons $2D \text{ to } 6D$ \Leftrightarrow CNN_2 \Leftrightarrow $6D \text{ pose}$
 $2d \text{ detector}, \\ viewpoint classifier$
Ours
image \bigcirc $CNN_1(\sim YOLO)$ \Leftrightarrow PnP \Leftrightarrow $6D \text{ pose}$
 $3D \text{ bounding box corner predictor}$ $pose \text{ solver}$

3D bounding box corner predictor

Our Method

- Single-shot 2D object detection (YOLO, SSD)
- Our CNN predicts 2D projections of 3D bounding box vertices (and the centroid). We run PnP solver on 9 2D-3D correspondences.
- Accurate, fast (50-90 fps); detects multiple objects in one pass.

Our Method

Training:

- ground truth 2D coordinates of the 9 control points are the targets
- modify YOLO loss function (for confidence estimation)
- data augmentation

Testing:

- Subpixel refinement
- PnP (RANSAC, least squares)

CNN Architecture

CNN Architecture

Results on LineMOD dataset

- Two accuracy metrics (2D image projection, 3D model overlap).
- Percentage of test images where the error was lower than specified thresholds.

Method	thod w/o Refinement		w/ Refinement		
	Brachmann	BB8	OURS	Brachmann	BB8
Object	[2]	[25]		[2]	[25]
Ape	-	95.3	92.10	85.2	96.6
Benchvise	Rectangular Snip	80.0	95.06	67.9	90.1
Cam	-	80.9	93.24	58.7	86.0
Can	-	84.1	97.44	70.8	91.2
Cat	-	97.0	97.41	84.2	98.8
Driller	-	74.1	79.41	73.9	80.9
Duck	-	81.2	94.65	73.1	92.2
Eggbox	-	87.9	90.33	83.1	91.0
Glue Holepuncher	-	89.0	96.53	74.2	92.3
	-	90.5	92.86	78.9	95.3
Iron	-	78.9	82.94	83.6	84.8
Lamp	-	74.4	76.87	64.0	75.8
Phone	-	77.6	86.07	60.6	85.3
Average	69.5	83.9	90.37	73.7	89.3

2D metric

3D metric

Method	w/o Refinement			w/ Refinement			
	Brachmann	BB8	SSD-6D	OURS	Brachmann	BB8	SSD-6D
Object	[2]	[25]	[10]		[2]	[25]	[10]
Ape	-	27.9	0	21.62	33.2	40.4	65
Benchvise	-	62.0	0.18	81.80	64.8	91.8	80
Cam	-	40.1	0.41	36.57	38.4	55.7	78
Can	-	48.1	1.35	68.80	62.9	64.1	86
Cat	-	45.2	0.51	41.82	42.7	62.6	70
Driller	-	58.6	2.58	63.51	61.9	74.4	73
Duck	-	32.8	0	27.23	30.2	44.3	66
Eggbox	-	40.0	8.9	69.58	49.9	57.8	100
Glue	-	27.0	0	80.02	31.2	41.2	100
Holepuncher	-	42.4	0.30	42.63	52.8	67.2	49
Iron	-	67.0	8.86	74.97	80.0	84.7	78
Lamp	-	39.9	8.20	71.11	67.0	76.5	73
Phone	-	35.2	0.18	47.74	38.1	54.0	79
Average	32.3	43.6	2.42	55.95	50.2	62.7	79

Results on LineMOD dataset

Running Times:

- On TitanX or similar GPU.
- using cuDNN

Method	Overall speed for 1 object	Refinement runtime
Brachmann et al. [2]	2 fps	100 ms/object
Rad & Lepetit [25]	3 fps	21 ms/object
Kehl et al. [10]	10 fps	24 ms/object
OURS	50 fps	-

Method	2D projection metric	Speed	
416 × 416	89.71	94 fps	
480×480	90.00	67 fps	
544×544	90.37	50 fps	
688×688	90.65	43 fps	

Up to 90 fps on smaller images

Conclusions

- New trends and challenges in stereo matching
- Improving Semi-Global Stereo (SGM) Matching
 - Incorporating orientation priors
 - Learned fusion step
- Fast scene flow with motion segmentation
- Camera path planning for improved multi-view stereo
- Deep single shot 6D object pose estimation

Collaborators

Rick Szeliski Facebook

Adarsh Kowdle Google

Daniel Scharstein Middlebury College

Tatsunori Taniai RIKEN, Tokyo

Yoichi Sato Univ. of Tokyo

Bugra Tekin EPFL

Pascal Fua EPFL

Johannes Schoenberger ETH Zurich

Marc Pollefeys Microsoft / ETH Zurich