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2Overview

▪ Correspondence Problems in Computer Vision

▪ Stereo Matching

▪ Semi Global Matching (SGM) and extensions

▪ Priors and optimization

▪Deep Learning for stereo

▪ Scene Flow with Motion Segmentation



3Image to Image correspondence

Multiview stereoBinocular Stereo SIFT Flow (Liu+ 2008)

Optical flow

Deformable Spatial Pyramids (Kim+ 2013)

Geometric Semantic

Joint Correspondence and Cosegmentation 
(Taniai+ 2016)

Scene Flow



4Stereo Matching

Left Right

▪ Dense pixel correspondence in rectified pairs  

▪ Disparity Map: 𝐷 𝑥, 𝑦

𝑥′= 𝑥 + 𝐷 𝑥, 𝑦 , 𝑦′= 𝑦

▪ Depth Map:  𝑍 𝑥, 𝑦 =
𝑏𝑓

𝐷(𝑥,𝑦)

Depth Map

Left Disparity Map



5Binocular Stereo Matching

𝑥

𝑦
𝑧

𝑝′
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Right



6Binocular Stereo Matching
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7Discrete Search Space

▪ Disparity Space Image

▪ 1D horizontal shifts (𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥)

▪ Plane Sweep Volume
▪ Search over depths ..

▪ Stereo Rectification not needed

▪ Issue of fronto-parallel bias

𝑑Left image

𝑧

Reference Image
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Matching Cost Volume

▪ Disparity Search Space

- Discrete 1D horizontal shifts [𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥]

▪ Matching (dissimilarity) cost

- Hand engineered or learned features

Objective: 

Assign per-pixel disparities that 

minimize the matching costs.

𝑑

Left image DSI

𝑤

Ground truth surface (cross-section)



9Need a way to compare an image patch

Correct match: low cost Incorrect match: high cost



10Matching costs

▪ Find pairs of pixels (or local patches) with similar appearance

▪ Minimize matching cost (maximize photo-consistency)

▪ Patch-based (parametric vs non-parametric)

- Sum of Absolute Difference (SAD), 

- Sum of Squared Difference (SSD), 

- Normalized Cross Correlation (ZNCC)

- Census, Rank filter, … 

▪ Descriptor-based 

- (hand-crafted features) SIFT, DAISY, …

- (learnt features) Deep learning (revisit later)

Evaluation of Stereo Matching Costs on Images with 
Radiometric Differences
[Hirschmuller and Scharstein, PAMI 2008]



11Local Optimization

▪ Minimize matching cost at each pixel in the left image 

independently

▪ Winner-take-all (WTA)



12Local Optimization

▪ Minimize matching cost at each pixel in the left image 

independently

▪ Winner-take-all (WTA)

▪ Adaptive support weights

Image Patch          Adaptive Weights

Locally Adaptive Support-Weight Approach for Visual Correspondence Search
[Yoon and Kweon, CVPR 2005]



13Local evidence not enough …

▪ Photometric Variations

▪ Fore-shortening

▪ Reflections

▪ Transparent surfaces

▪ Texture-less Areas

▪ Non-Lambertian Surfaces

▪ Repetitive patterns

▪ Complex Occlusions

(Image Source: Lectures on stereo matching, Christian Unger and Nassir Navab, TU Munchen) 
http://campar.in.tum.de/twiki/pub/Chair/TeachingWs09Cv2/3D_CV2_WS_2009_Stereo.pdf
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17Global Optimization

▪ Solve for all disparities simultaneously …

▪ Solve a pixel labeling problem

▪ Labels are discrete (ordered), 𝑑 ∈ 𝐿𝐷
𝐿D = [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥]

▪ Incorporate regularization into objective

𝐸 𝐷 = Edata 𝐷 + Esmooth(𝐷)

▪ Data term encodes matching costs

▪ Smoothness term encodes priors

▪ Encourage adjacent pixels to take similar disparities



18Global Optimization

▪ Inference on Markov Random Fields (MRF)

▪ Minimize Energy Function.

𝐸 𝐷 = Edata 𝐷 + Esmooth 𝐿



𝑝∈𝐼

𝐶𝑝 𝑑𝑝 + 

𝑝,𝑞 ∈𝑁

𝑉𝑝𝑞(𝑑𝑝, 𝑑𝑞)

𝐶𝑝 𝑑𝑝 : matching cost term (tabular representation)

𝑉𝑝𝑞 𝑑, 𝑑′ : pairwise term (Potts, truncated linear or quadratic ...)

contrast sensitive Potts prefers discontinuity at image edges

=



19Global Optimization

▪ Exact binary MRFs can be efficiently optimized
▪ submodular 𝑉𝑝𝑞(∗,∗): equivalent to finding max-flow on graph

▪ But, multi-label case is NP-Hard, for suitable 𝑉𝑝𝑞(∗,∗)

▪ such as, discontinuity-preserving Potts model.

▪ Approximate energy minimization for multi-label MRF

▪ Graph cuts [Boykov+ 98, Kolmogorov and Zabih 2002]

▪ Alpha-expansion (calls max-flow in inner-loop)

▪ Belief Propagation etc. – (see previous tutorials)
▪ ICCV’07 tutorial (Discrete Optimization in Computer Vision)

▪ IPAM’08 workshop (Graph Cuts and Related Discrete or Continuous Optimization Problems)
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Semi Global Matching (SGM)



21Scanline Optimization (1D)

Minimize

𝐸 𝐷 =

𝑝∈𝐼

𝐶𝑝 𝑑𝑝 + 

𝑝,𝑞 ∈𝑁

𝑉𝑝𝑞(𝑑𝑝, 𝑑𝑞)

▪ Let the pairwise term be:



22Scanline Optimization (1D)
Minimize:

𝐸 𝐷 =

𝑝∈𝐼

𝐶𝑝 𝑑𝑝 + 

𝑝,𝑞 ∈𝑁

𝑉𝑝𝑞(𝑑𝑝, 𝑑𝑞)

▪ Consider the above problem on a 1D scanline.

▪ Compute an aggregated matching cost

▪ r = (1, 0):  start at leftmost pixel, scan left



23Semi Global Matching (SGM)

▪ For 8 directions 
- calculate aggregated costs

▪ Finally, sum the costs and select per-pixel minima.



24Efficient Update

▪ The minimum can be computed efficiently 
because 𝑉(𝑑, 𝑑′) has this special form 

▪ Precompute                                         for previous pixel

▪ This term is constant for all disparities 𝑑
▪ subtract the minimum value

▪ Then, compute  

𝐿𝐫 𝐩, 𝑑 = 𝐶𝐩 𝑑 + min( 𝑃2 , 𝐿𝐫 𝐩 − 𝐫, 𝑑 , 𝐿𝐫 𝐩 − 𝐫, 𝑑 − 1 + 𝑃1, 𝐿𝐫 𝐩 − 𝐫, 𝑑 + 1 + 𝑃1 )



25Semi Global Matching (SGM)
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27Semi Global Matching (SGM)



28SGM and message passing (BP, TRW-S)

▪ Insight 1: SGM interpreted as min-sum

Belief Propagation on a star shaped subgraph

▪ A different subgraph for every pixel.

▪ Insight 2: SGM’s efficient reuse of messages

▪ Minor adjustment to aggregated cost gives min-marginals

▪ Also related to tree-reweighted 

message passing

▪ Uncertainty measure

▪ Gap between minimum of sums and

sum of minimums for different directions

[Drory+ 2014, in Pattern Recognition]

Black : low uncertainty



29Summary

Pros

▪ Easy to implement

▪ Parallelizable

▪ Fit for real-time, embedded systems (FPGA, GPUs …)

▪ Related to established message passing techniques

Cons

▪ Cannot handle slanted weakly textured surfaces

▪ Fronto-parallel bias 

▪ Somewhat large memory footprint
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SGM extensions



311. Coarse to fine SGM

▪ Per-pixel disparity range

▪ depth prior

▪ interval size can vary

▪ Per-pixel disparity range

▪ coarse to fine strategy

▪ interval size is fixed

▪ reduces memory footprint

Iterative semi-global matching 
for robust driver assistance systems
[Hermann and Klette, ACCV 2012]

SURE: Photogrammetric Surface Reconstruction from Imagery
[Rothermel+ LC3D workshop]



333. Embedded SGM Stereo 
Real-time and Low Latency Embedded Computer Vision Hardware Based on a Combination of FPGA and 
Mobile CPU
[Honegger, Oleynikova and Pollefeys, IROS 2014]

Normal SGM 5 paths that avoid bottom to top scan

▪ Image processed one horizontal scanline at a time

▪ Low-latency, low-memory footprint

▪ 60 Hz at 752 x 480 resolution (FPGA for small UAVs and robots)



344. More Global Matching (MGM)

▪ gather evidence from two directions (quadrant)
▪ SGM only uses one direction.

▪ minor change to SGM recursion (update) step.

▪ only few extra operations per pixel

▪ parallelizable

[Facciolo+ BMVC’15]
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Geometric and Semantic Priors 

for stereo matching



36Stereo Matching with Structured Priors

▪ Label space: go beyond disparity labels

▪ 3D Planes 

[Birchfield and Tomasi 2001, Furukawa+ 2009, Sinha+ 2009, Gallup+ 2010]

▪ Surfaces [Bleyer+ 2010]

▪ 2-Layers [Sinha+ 2012]

▪ Joint Stereo and Segmentation

▪ Appearance (color) models [Bleyer+ 2011, Kowdle+ 2012]

▪ Semantic Segmentation [Ladicky+ 2010]



37Piecewise Planar Stereo (+ color models)

▪ Label set is a set of unbounded 3d planes:   𝐿 = [𝜋1, 𝜋2, … 𝜋𝑛]

▪ Energy minimization via graph cuts

▪ pixel-plane labeling

▪ pairwise terms

▪ Crease between planes

▪ Line segments, vanishing points

[Sinha+ ICCV’09]



38Piecewise Planar Stereo (+ color models)
[Sinha+ ICCV’09]

Pros
▪ Piecewise planar bias good for urban scene
▪ Label-specific, spatially-varying smoothness
▪ Handles slanted planar surfaces
▪ Crease between planes modeled

Cons
▪ Not great for general scenes
▪ Correct plane may be missing
▪ Unbounded planes costly to 

evaluate



39Piecewise Planar Stereo (+ color models)

▪ Run SGM stereo

▪ Extract planes

▪ per-plane color model (online learning)

▪ Pixel-plane labeling via graph-cuts

▪ Trade-off stereo and color segmentation cues (unary terms)

SGM Stereo Depth mapPlane labelsPlane hypotheses

[Kowdle+ ECCV’12]



40Object Stereo

▪ Joint Stereo and Segmentation 

▪ For both views, estimate

▪ Disparity map

▪ Object labeling

▪ Model

▪ Scene has a few objects. Each has a

▪Object color model (GMM)

▪ Distribution of pixel colors is compact

▪Object surface model (plane + parallax)

▪ Pixels lie close to a 3D object plane

[Bleyer+ CVPR’11]



41Object Stereo

𝐸 𝐷,𝑂 = 𝐸𝑝ℎ𝑜𝑡𝑜 𝐷,𝑂 + 𝐸𝑠𝑚𝑜𝑜𝑡ℎ−𝐷 𝐷,𝑂 + 𝐸𝑠𝑚𝑜𝑜𝑡ℎ−𝑂 𝐷,𝑂 + 𝐸𝑚𝑑𝑙 𝐷,𝑂 + …

▪ Proposal generation

▪ Merge proposals optimally
- MRF Fusion moves 

- Quadratic Pseudo Boolean Optimization

- non-submodular Graph Cuts

Current solution

Proposal

Fusion result

[Bleyer+ CVPR’11]

Minimize: 



42Joint Stereo and Semantic Segmentation

[Ladicky+ BMVC 2010]

▪ Object class and depth are mutually informative 

▪ Each pixel takes label 𝑧 = 𝑑, 𝑐 ∈ 𝐿𝐷𝑒𝑝𝑡ℎ × 𝐿𝑂𝑏𝑗

▪ Energy function:

▪ Unary: wt. sum of likelihoods (class label, depth)

▪ Pairwise: depth transition at object label boundary

▪ Higher Order: consistency of superpixels ..

▪ Optimized using graph cuts



43Joint Stereo and Semantic Segmentation

[Ladicky+ BMVC 2010]

▪ Alpha expansion on label pairs (in product space)

▪ Too many labels, slow .. 

▪ Projected expansion move

▪ Keep one of the two label components fixed

▪ Expansion move in object class projection

▪ Expansion move in depth projection

unary pairwise higher-order
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Continuous Stereo



453D Label Stereo

𝑥

𝑦
𝑧

𝑝′

Left

Right

▪ Estimate per-pixel 3D tangent planes (depth 𝑧 + normal 𝑛)
▪ Infinite and continuous label space



461. PatchMatch Stereo

▪ Representation: 

▪ slanted disparity plane 𝑓𝑝 at pixel 𝑝

▪ Label (𝑎𝑓𝑝 , 𝑏𝑓𝑝 , 𝑐𝑓𝑝) ∈ 𝑅3

𝑑𝑝 = 𝑎𝑓𝑝 𝑝𝑥 + 𝑏𝑓𝑝 𝑝𝑦 + 𝑐𝑓𝑝

▪ Matching cost: 

▪ color and gradient difference

▪ Adaptive support weights 

[Bleyer+ BMVC’11]



471. PatchMatch Stereo

Inference via PatchMatch [Barnes+ 2009]

▪ Randomly initialize disparity planes

▪ At each iteration

▪ Propagate disparity labels 

▪ from neighbors 

▪ from other view 

▪ If cost decreases, accept

▪ Re-fit planes

▪ Regularization added

▪ PatchMatch BP [Besse+ 2012], Local Expansion Move [Taniai+ 2014]

[Bleyer+ BMVC’11]



48

Traditional α-expansions
[Boykov+ 2001]

2. Local Expansion Moves

☺ Spatially localized
label-space searching

Local α-expansions

Fusion via graph cuts

Current solution

α

 Intractable due to 
the infinite label space

Proposals
Many
α’s

Proposals

[Taniai+ 2014]

Continuous Stereo Matching using Local Expansion Moves
Taniai + 2017 (arxiv, TPAMI sub)



492. Local Expansion Moves

Current 
solution

Local α-expansion
(disparity plane patch)

𝛼Choose Perturb
𝑻𝒑 + 𝚫

Improved solution

Propagation and randomized search like PatchMatch [Barnes+ ToG ‘09]

3x3 cells

Fusion via 
graph cuts

Current solution

Continuous Stereo Matching using Local Expansion Moves
Taniai + 2017 (arxiv, TPAMI sub)



502. Local Expansion Moves

After 10 iterations

After post-proc.

Error map

Middlebury V3 
benchmark
1st rank amongst 
64 methods 
(June 2017)

White: correct
Black: incorrect
Gray: incorrect 
but occluded

Ranking of all methods using MC-CNN [Zbontar and LeCun, 2016]

Continuous Stereo Matching using Local Expansion Moves
Taniai + 2017 (arxiv, TPAMI sub)
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Deep Learning in Stereo
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▪ ConvNet compares two patches and predicts true vs. false match

▪ produces the disparity space image (DSI)

▪ trained on patches extracted from stereo ground truth

▪ Positive pairs sampled directly from disparity maps

▪ Negative pairs sampled with moderate perturbation

▪ Stereo Matching

▪ Cross-based Cost Aggregation [Mei+ 2011]

▪ Semi-Global Matching (SGM)

Learning the Matching Cost

Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches
Zbontar and Lecun [CVPR 2015] [JMLR 2016]



53Local Feature Learning using Siamese Networks

▪ Verification Tasks [Bromley et al. 1994]
▪ Given pairs of entities (faces, signatures, .. ), 

▪ Predict match vs. non-match

▪ Learning Image Descriptors

▪ Training Data: Stereo ground truth, CG datasets, Internet photos
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Learning the Matching Cost

Accurate Architecture (MC-CNN acrt) [Siamese + Metric Network]

[Zbontar and Lecun JMLR 2016]
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Learning the Matching Cost

Fast Architecture (MC-CNN fst) [Siamese Network]

[Zbontar and Lecun JMLR 2016]



56Visualizing the DSI (NCC vs MC-CNN-fst)

DSI

Error map
(w SGM)

MC-CNN NCC 7x7 

Advantages of MC-CNN
- discriminates weak, low 

frequency textures
- Accurate at depth 

boundaries, slanted surfaces
- Ignores horizontal edges

MC-CNN-acrt vs. MC-CNN-fst
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Deep visual correspondence embedding model for stereo matching costs
[Chen+ ICCV 2015]

Efficient Deep Learning for Stereo Matching
[Luo+ CVPR 2016]

▪ Also proposed faster Siamese network architecture

▪ Combines computation at two scale (full and half resolution)

▪ Smaller network, 100x faster than MC-CNN-acrt

▪ Concurrent to [Chen+ 2015, Zbontar+ 2016]

▪ Tested small Siamese networks

▪ Multi-class classification loss instead of binary classification loss

▪ Analyzed receptive field size, showed larger is better
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▪ Contracting Part: convolutions

▪ Expanding Part (see FlowNet [Dosovitskiy+ ICCV 2015])

▪ Up-convolutions (convolutional transpose)

▪ Concatenated with feature maps from 

contracting part and the predicted disparity maps

A Large Dataset to Train Convolutional Networks for Disparity, 
Optical Flow, and Scene Flow Estimation [Mayer+ CVPR 2016]
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▪ Network trained on synthetic data (Flying Chairs3D) and fine-tuned on KITTI2015

▪ Observations in the paper: Fine-tuning on KITTI improves the results on that 
dataset but increases errors on other datasets.
▪ KITTI 2015 has small disparity range 

▪ Fine-tuning hurts performance on other datasets with larger disparity range. 

A Large Dataset to Train Convolutional Networks for Disparity, 
Optical Flow, and Scene Flow Estimation [Mayer+ CVPR 2016]
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▪ Cost Volumes are back

▪ Extensive use of 3D convolutions; capture context

▪ Differentiable soft-argmin (first proposed by […, Bengio] ICLR 2014)

End-to-End Learning of Geometry and Context for Deep Stereo 
Regression [Kendall+ arxiv 2017]
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End-to-End Learning of Geometry and Context for Deep Stereo 
Regression [Kendall+ arxiv 2017]

KITTI 2015 Stereo Benchmark
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▪ Learning the matching cost: 

▪ MC-CNN [Zbontar + Lecun 2015],  Chen+ 2015, Luo+ 2016

▪ Continuous MRFs: [Taniai+ 2017] (Rank 1 on Middlebury 2014!)

▪ Deep stereo regression (end to end training) 

▪ FlowNet [Dosovitskiy+ 2015], DispNet [Mayer+ 2016]

▪ Return of “Correlation”

▪ DispNetCorr [Mayer+ 2016]

▪ GC-Net [Kendall+ 2017]

▪ Return of “CRFs” (Hybrid CNN-CRF models)

▪ Seki and Pollefeys 2017, Knobelreiter+ 2017 

New Trends
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Middlebury 2014

KITTI 2015Stereo Benchmark Rankings

▪ Group A and B have no methods in common!

▪ Group A entries all use MC-CNN acrt but no other “deep learning” technique!

▪ Group B methods do NOT use MC-CNN acrt; they use ResNet, 3D convolutions, 3D 

deconvolutions, U-shaped Nets, RNNs; End to end learning is very popular!

MC-CNN acrt 
[Zbontar Lecun 2015]

#13

#15

▪ Group B

Group A
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▪ Dataset bias exists.

▪ Middlebury stereo pairs from different scenes; makes learning difficult.

▪ Need better benchmark to evaluate “deep stereo regression”.

▪ MC-CNN appears robust. But, different models trained for Midd2014 and KITTI.

▪ Personal experience with MC-CNN-acrt; found them to do poorly on ETH3D 2017.

CVPR 2017 Robust Vision Challenge workshop

Must train one model on 

combined training set and 

submit to all benchmarks!
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ROB methods (current rankings)

METHOD Deep learning? Middlebury Rank KITTI Rank ETH3D Rank

NOSS_ROB ? 1 133 2

DN-CSS_ROB 40 40 1

PSMNet_ROB 60+ 9 7

NaN_ROB 4 33 10

SGM 31 90+ 21

total 80 144 39
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Stereoscopic Scene Flow



67Stereoscopic Scene Flow

𝑿𝑡 = 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡

𝑝𝑝′

𝐼𝑡
0

𝐼𝑡
1

Stereo disparity
1D horizontal translation

(scene depth 𝑧)

𝑝′



68Stereoscopic Scene Flow

𝐼𝑡
0

𝐼𝑡+1
0

𝐼𝑡
1

𝐼𝑡+1
1

𝑿𝑡

𝑝

𝑝′

𝑝′

𝑿𝑡+1

Stereo disparity
1D horizontal translation

(scene depth 𝑧)

Optic Flow
(camera and 

object motion)



69Stereoscopic Scene Flow

𝑿𝑡

Stereo disparity
1D horizontal translation

(scene depth 𝑧)
𝐼𝑡
0

𝐼𝑡+1
0

𝑿𝑡+1

Scene Flow 
3D translation

(object motion)

Optic Flow
(camera and 

object motion)



70Scene Flow

Optical FlowDisparity Map Moving Object segmentation

Left Right

Input: Stereo Video

Output

Fast Multi-frame Stereo Scene Flow with Motion Segmentation
Taniai, Sinha, Sato CVPR 2017



71

Visual
odometry

Initial motion
segmentation

Optical 
flow

𝐼𝑡
0, 𝐼𝑡+1

0

Frig

Rigid flow ෩S
Init. seg.

Epipolar 
stereo

𝐼𝑡±1
0,1 , 𝐼𝑡

0, 𝐼𝑡
1

Flow fusion

Fnon

Non-rigid flow

𝐼𝑡
0, 𝐼𝑡+1

0

+ ෪D + 𝐏,D+ 𝐏

𝐏
Ego-motion

D
Disparity

+ ෩S

Binocular
stereo

𝐼𝑡
0, 𝐼𝑡

1

෪D
Init. disparity

𝐼𝑡±1
0,1 , 𝐼𝑡

0, 𝐼𝑡
1 𝐼𝑡

0, 𝐼𝑡+1
0

+Frig,Fnon

F
Flow

Input

Fast Multi-frame Stereo Scene Flow with Motion Segmentation
Taniai, Sinha, Sato CVPR 2017
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KITTI 2015 Scene Flow Benchmark (November 2016)

200 road scenes with multiple moving objects

Fast Multi-frame Stereo Scene Flow with Motion Segmentation
Taniai, Sinha, Sato CVPR 2017



73Breakdown of Running times
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200 scenes from KITTI benchmark

0.72 sec   Initialization

0.47 sec   Binocular stereo

0.38 sec   Visual odometry

0.47 sec   Epipolar stereo

0.36 sec   Initial segmentation

0.48 sec   Optical flow

0.07 sec   Flow fusion

2.72 sec per frame

CPU: 3.5 GHz × 4 Cores
Image: (1242 × 375) × 0.65 scale



75Summary

▪ Semi Global Matching (SGM) and extensions

▪ Geometric and Semantic Priors

▪ Continuous optimization

▪ High Resolution Stereo

▪ Deep Learning in Stereo

▪ Stereoscopic Scene Flow


