3D Vision: Theory, Application and New Trends

1

Dense Correspondence Estimation

Sudipta N. Sinha Microsoft Research, Redmond, USA July 4, 2018

3rd SUMMER SCHOOL ON COMPUTER VISION,

BASICS OF MODERN AI, 2—7 July 2018, IIIT Hyderabad

Overview

- Correspondence Problems in Computer Vision
- Stereo Matching
 - Semi Global Matching (SGM) and extensions
 - Priors and optimization
 - Deep Learning for stereo
- Scene Flow with Motion Segmentation

Image to Image correspondence

Geometric

Scene Flow

Semantic

SIFT Flow (Liu+ 2008)

Deformable Spatial Pyramids (Kim+ 2013)

Joint Correspondence and Cosegmentation (Taniai+ 2016)

Stereo Matching

- Dense pixel correspondence in rectified pairs
- Disparity Map: D(x, y)

$$x' = x + D(x, y), \quad y' = y$$

• Depth Map: $Z(x, y) = \frac{bf}{D(x, y)}$

Depth Map

Binocular Stereo Matching

Binocular Stereo Matching

Discrete Search Space

- Disparity Space Image
 - 1D horizontal shifts (d_{min}, d_{max})

- Plane Sweep Volume
 - Search over depths ..
 - Stereo Rectification not needed
- Issue of fronto-parallel bias

Matching Cost Volume

- Disparity Search Space
 - Discrete 1D horizontal shifts $[d_{min}, d_{max}]$
- Matching (dissimilarity) cost
 - Hand engineered or learned features

Objective:

Assign per-pixel disparities that minimize the matching costs.

Ground truth surface (cross-section)

Need a way to compare an image patch

Correct match: low cost

Incorrect match: high cost

Matching costs

- Find pairs of pixels (or local patches) with similar appearance
- Minimize <u>matching cost</u> (maximize photo-consistency)
 - Patch-based (parametric vs non-parametric)
 - Sum of Absolute Difference (SAD),
 - Sum of Squared Difference (SSD),
 - Normalized Cross Correlation (ZNCC)
 - Census, Rank filter, ...

Evaluation of Stereo Matching Costs on Images with Radiometric Differences

[Hirschmuller and Scharstein, PAMI 2008]

- Descriptor-based
 - (hand-crafted features) SIFT, DAISY, ...
 - (learnt features) Deep learning (revisit later)

$$C_{SAD}(\mathbf{p}, \mathbf{d}) = \sum_{\mathbf{q} \in N_{\mathbf{p}}} |I_L(\mathbf{q}) - I_R(\mathbf{q} - \mathbf{d})|$$

$$C_{ZNCC}(\mathbf{p}, \mathbf{d}) = \frac{\sum_{\mathbf{q} \in N_{\mathbf{p}}} (I_L(\mathbf{q}) - \bar{I}_L(\mathbf{p})) (I_R(\mathbf{q} - \mathbf{d}) - \bar{I}_R(\mathbf{p} - \mathbf{d}))}{\sqrt{\sum_{\mathbf{q} \in N_{\mathbf{p}}} (I_L(\mathbf{q}) - \bar{I}_L(\mathbf{p}))^2 \sum_{\mathbf{q} \in N_{\mathbf{p}}} (I_R(\mathbf{q} - \mathbf{d}) - \bar{I}_R(\mathbf{p} - \mathbf{d}))^2}}$$

Local Optimization

- Minimize matching cost at each pixel in the left image independently
- Winner-take-all (WTA)

Local Optimization

- Minimize matching cost at each pixel in the left image independently
- Winner-take-all (WTA)
- Adaptive support weights

Locally Adaptive Support-Weight Approach for Visual Correspondence Search [Yoon and Kweon, CVPR 2005]

- Photometric Variations =>
- Fore-shortening
- Reflections
- Transparent surfaces
- Texture-less Areas
- Non-Lambertian Surfaces
- Repetitive patterns
- Complex Occlusions

(Image Source: Lectures on stereo matching, Christian Unger and Nassir Navab, TU Munchen) http://campar.in.tum.de/twiki/pub/Chair/TeachingWs09Cv2/3D_CV2_WS_2009_Stereo.pdf

- Photometric Variations
- Fore-shortening
- Reflections
- Transparent surfaces
- Texture-less Areas
- Non-Lambertian Surfaces
- Repetitive patterns
- Complex Occlusions

(Image Source: Lectures on stereo matching, Christian Unger and Nassir Navab, TU Munchen) http://campar.in.tum.de/twiki/pub/Chair/TeachingWs09Cv2/3D_CV2_WS_2009_Stereo.pdf

- Photometric Variations
- Fore-shortening
- Reflections
- Transparent surfaces
- Texture-less Areas
- Non-Lambertian Surfaces
- Repetitive patterns
- Complex Occlusions

(Image Source: Lectures on stereo matching, Christian Unger and Nassir Navab, TU Munchen) http://campar.in.tum.de/twiki/pub/Chair/TeachingWs09Cv2/3D_CV2_WS_2009_Stereo.pdf

- Photometric Variations
- Fore-shortening
- Reflections
- Transparent surfaces
- Texture-less Areas
- Non-Lambertian Surfaces
- Repetitive patterns
- Complex Occlusions

(Image Source: Lectures on stereo matching, Christian Unger and Nassir Navab, TU Munchen) http://campar.in.tum.de/twiki/pub/Chair/TeachingWs09Cv2/3D_CV2_WS_2009_Stereo.pdf

Global Optimization

- Solve for all disparities simultaneously ...
- Solve a pixel labeling problem
- Labels are discrete (ordered), $d \in L_D$

 $L_{\rm D} = [d_{min}, d_{max}]$

Incorporate regularization into objective

$$E(D) = E_{data}(D) + E_{smooth}(D)$$

- Data term encodes matching costs
- Smoothness term encodes priors
 - Encourage adjacent pixels to take similar disparities

Global Optimization

- Inference on Markov Random Fields (MRF)
- Minimize Energy Function.

$$E(D) = E_{data}(D) + E_{smooth}(L)$$

=
$$\sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$$

 $C_p(d_p)$: matching cost term (*tabular representation*) $V_{pq}(d, d')$: pairwise term (Potts, truncated linear or quadratic ...) <u>contrast sensitive Potts</u> prefers discontinuity at image edges

Global Optimization

- Exact binary MRFs can be efficiently optimized
 - submodular $V_{pq}(*,*)$: equivalent to finding max-flow on graph
- But, multi-label case is NP-Hard, for suitable $V_{pq}(*,*)$
 - such as, discontinuity-preserving Potts model.
- Approximate energy minimization for multi-label MRF
 - Graph cuts [Boykov+ 98, Kolmogorov and Zabih 2002]
 - Alpha-expansion (calls max-flow in inner-loop)
 - Belief Propagation etc. (see previous tutorials)
 - ICCV'07 tutorial (Discrete Optimization in Computer Vision)
 - IPAM'08 workshop (Graph Cuts and Related Discrete or Continuous Optimization Problems)

Scanline Optimization (1D)

Minimize

$$E(D) = \sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$$

• Let the pairwise term be:

$$V(d, d') = \begin{cases} 0 & \text{if } d = d' \\ P_1 & \text{if } |d - d'| = 1 \\ P_2 & \text{if } |d - d'| \ge 2. \end{cases}$$

Scanline Optimization (1D)

Minimize:

$$E(D) = \sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$$

- Consider the above problem on a 1D scanline.
- Compute an aggregated matching cost

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d') + V(d,d')).$$

• $\mathbf{r} = (1, 0)$: start at leftmost pixel, scan left

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d') + V(d,d')).$$

• Finally, sum the costs and select per-pixel minima.

For 8 directions

- calculate aggregated costs

$$S(\mathbf{p}, d) = \sum_{\mathbf{r}} L_{\mathbf{r}}(\mathbf{p}, d)$$
$$D_{\mathbf{p}} = \arg\min_{d} S(\mathbf{p}, d).$$

Efficient Update

$$L_{\mathbf{r}}(\mathbf{p}, d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p} - \mathbf{r}, d') + V(d, d')).$$
The minimum can be computed efficiently because $V(d, d')$ has this special form
$$V(d, d') = \begin{cases} 0 & \text{if } d = d' \\ P_1 & \text{if } |d - d'| = 1 \\ P_2 & \text{if } |d - d'| \ge 2. \end{cases}$$
Precompute
$$\min_{d' \in \mathcal{D}} L_{\mathbf{r}}(\mathbf{p} - \mathbf{r}, d') \text{ for previous pixel}$$

- This term is constant for all disparities *d*
- subtract the minimum value
- Then, compute

 $L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min(P_{2}, L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d), L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d-1) + P_{1}, L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d+1) + P_{1})$

SGM and message passing (BP, TRW-S)

[Drory+ 2014, in Pattern Recognition]

- Insight 1: SGM interpreted as min-sum
 Belief Propagation on a star shaped subgraph
 - A different subgraph for every pixel.
- Insight 2: SGM's efficient reuse of messages
 - Minor adjustment to aggregated cost gives min-marginals
- Also related to tree-reweighted message passing
- Uncertainty measure
 - Gap between minimum of sums and sum of minimums for different directions

Summary

Pros

- Easy to implement
- Parallelizable
- Fit for real-time, embedded systems (FPGA, GPUs ...)
- Related to established message passing techniques

Cons

- Cannot handle slanted weakly textured surfaces
- Fronto-parallel bias
- Somewhat large memory footprint

SGM extensions

1. Coarse to fine SGM

- Per-pixel disparity range
 - depth prior
 - interval size can vary

Iterative semi-global matching for robust driver assistance systems [Hermann and Klette, ACCV 2012]

- Per-pixel disparity range
 - coarse to fine strategy
 - interval size is fixed
 - reduces memory footprint

SURE: Photogrammetric Surface Reconstruction from Imagery [Rothermel+ LC3D workshop]

3. Embedded SGM Stereo

Real-time and Low Latency Embedded Computer Vision Hardware Based on a Combination of FPGA and Mobile CPU

[Honegger, Oleynikova and Pollefeys, IROS 2014]

Normal SGM

5 paths that avoid bottom to top scan

135°

180°

90°

45°

- Image processed one horizontal scanline at a time
- Low-latency, low-memory footprint
- 60 Hz at 752 x 480 resolution (FPGA for small UAVs and robots)

4. More Global Matching (MGM)

[Facciolo+ BMVC'15]

- gather evidence from two directions (quadrant)
 - SGM only uses one direction.
- minor change to SGM recursion (update) step.
- only few extra operations per pixel
- parallelizable

Geometric and Semantic Priors for stereo matching

Stereo Matching with Structured Priors

Label space: go beyond disparity labels

3D Planes

[Birchfield and Tomasi 2001, Furukawa+ 2009, Sinha+ 2009, Gallup+ 2010]

- Surfaces [Bleyer+ 2010]
- 2-Layers [Sinha+ 2012]

Joint Stereo and Segmentation

- Appearance (color) models [Bleyer+ 2011, Kowdle+ 2012]
- Semantic Segmentation [Ladicky+ 2010]

Piecewise Planar Stereo

[Sinha+ ICCV'09]

- Label set is a set of unbounded 3d planes: $L = [\pi_1, \pi_2, ..., \pi_n]$
- Energy minimization via graph cuts
 - pixel-plane labeling
 - pairwise terms
 - Crease between planes
 - Line segments, vanishing points

Piecewise Planar Stereo

[Sinha+ ICCV'09]

<u>Pros</u>

- Piecewise planar bias good for urban scene
- Label-specific, spatially-varying smoothness
- Handles slanted planar surfaces
- Crease between planes modeled

<u>Cons</u>

- Not great for general scenes
- Correct plane may be missing
- Unbounded planes costly to evaluate

Piecewise Planar Stereo (+ color models) [Kowdle+ ECCV'12]

SGM Stereo

Plane hypotheses

39

Plane labels

Depth map

- Run SGM stereo
- Extract planes
- per-plane color model (online learning)
- Pixel-plane labeling via graph-cuts
 - Trade-off stereo and color segmentation cues (unary terms)

Object Stereo

- Joint Stereo and Segmentation
- For both views, estimate
 - Disparity map
 - Object labeling
- Model
 - Scene has a few objects. Each has a
 - Object color model (GMM)
 - Distribution of pixel colors is *compact*
 - Object surface model (plane + parallax)
 - Pixels lie close to a 3D object plane

[Bleyer+ CVPR'11]

Object Stereo

Minimize:

 $E(D, O) = E_{photo}(D, O) + E_{smooth-D}(D, O) + E_{smooth-O}(D, O) + E_{mdl}(D, O) + \dots$

- Proposal generation
- Merge proposals optimally
 - MRF Fusion moves
 - Quadratic Pseudo Boolean Optimization
 - non-submodular Graph Cuts

[Bleyer+ CVPR'11]

Joint Stereo and Semantic Segmentation

[Ladicky+ BMVC 2010]

- Object class and depth are mutually informative
- Each pixel takes label $z = (d, c) \in L_{Depth} \times L_{Obj}$

Car

Building

Pavemen

Road

- Energy function:
 - Unary: wt. sum of likelihoods (class label, depth)
 - Pairwise: depth transition at object label boundary
 - Higher Order: consistency of superpixels ..
 - Optimized using graph cuts

Joint Stereo and Semantic Segmentation

[Ladicky+ BMVC 2010]

- Alpha expansion on label pairs (in product space)
 - Too many labels, slow ..
- Projected expansion move
 - Keep one of the two label components fixed
 - Expansion move in object class projection
 - Expansion move in depth projection

Continuous Stereo

- Estimate per-pixel 3D tangent planes (depth z + normal n)
- Infinite and continuous label space

1. PatchMatch Stereo

[Bleyer+ BMVC'11]

- Representation:
 - slanted disparity plane f_p at pixe
 - Label $(a_{f_p}, b_{f_p}, c_{f_p}) \in \mathbb{R}^3$

 $d_p = a_{f_p} p_x + b_{f_p} p_y + c_{f_p}$

- Matching cost:
 - color and gradient difference
 - Adaptive support weights

1. PatchMatch Stereo

[Bleyer+ BMVC'11]

Inference via PatchMatch [Barnes+ 2009]

- Randomly initialize disparity planes
- At each iteration
 - Propagate disparity labels
 - from neighbors
 - from other view
 - If cost decreases, accept
 - Re-fit planes
- Regularization added
 - PatchMatch BP [Besse+ 2012], Local Expansion Move [Taniai+ 2014]

2. Local Expansion Moves

Intractable due to the infinite label space

© Spatially localized label-space searching

Continuous Stereo Matching using Local Expansion Moves Taniai + 2017 (arxiv, TPAMI sub)

Current solution

Propagation and randomized search like PatchMatch [Barnes+ ToG '09]

2. Local Expansion Moves

Ranking of all methods using MC-CNN [Zbontar and LeCun, 2016]

bad 2.0 (%)		Weight															
Name	Res	Avg	Austr	AustrP	Bicyc2	Class	ClassE	Compu	Crusa	CrusaP	Djemb	DjembL	Hoops	Livgrm	Nkuba	Plants	Stairs
LocalExp (ours)	Н	5 . 43 1	3.65 <mark>2</mark>	2.87 <mark>3</mark>	2.98 <mark>1</mark>	1.99 <mark>1</mark>	5.59 <mark>1</mark>	3.37 <mark>1</mark>	3.48 <mark>2</mark>	3.35 <mark>1</mark>	2.05 <mark>1</mark>	10.3 <mark>2</mark>	9.75 <mark>2</mark>	8.57 <mark>4</mark>	14.4 <mark>8</mark>	5.40 <mark>3</mark>	9 . 55 <mark>5</mark>
3DMST [26]	Н	5.92 <mark>2</mark>	3.71 <mark>3</mark>	2.78 <mark>2</mark>	4.75 <mark>2</mark>	2 . 72 <mark>4</mark>	7.36 <mark>4</mark>	4.28 <mark>2</mark>	3.44 <mark>1</mark>	3.76 <mark>2</mark>	2 . 35 2	12.6 <mark>5</mark>	11.5 4	8.56 <mark>3</mark>	14.07	5.35 <mark>2</mark>	8.87 <mark>4</mark>
MC-CNN+TDSR [10]	F	6.35 <mark>3</mark>	5.45 <mark>8</mark>	4.45 <mark>12</mark>	6.80 1 <mark>3</mark>	3 . 46 10	10 . 7 10	6.05 7	5.017	5.19 <mark>8</mark>	2 . 62 6	10.8 <mark>3</mark>	9.62 <mark>1</mark>	6.59 <mark>1</mark>	11.4 <mark>1</mark>	6.01 <mark>6</mark>	7.04 <mark>1</mark>
PMSC [27]	Н	6.71 <mark>4</mark>	3.46 <mark>1</mark>	2.68 <mark>1</mark>	6.19 <mark>9</mark>	2.54 <mark>2</mark>	6.92 <mark>2</mark>	4.54 <mark>3</mark>	3.96 <mark>3</mark>	4 . 04	2.37 <mark>3</mark>	13.1 7	12.3 <mark>5</mark>	12.2 <mark>6</mark>	16.2 <mark>13</mark>	5.88 <mark>5</mark>	10.8 <mark>8</mark>
NTDE [18]	Н	7.44 <mark>8</mark>	5.72 1 <mark>2</mark>	4.36 11	5.92 <mark>7</mark>	2 . 83 <mark>5</mark>	10.47	5.71 <mark>5</mark>	5.30 <mark>8</mark>	5.54 <mark>9</mark>	2.40 4	13.5 <mark>8</mark>	14.1 <mark>9</mark>	12.6 <mark>8</mark>	13.9 <mark>6</mark>	6.39 <mark>8</mark>	12.2 <mark>13</mark>
MC-CNN-acrt [46]	Н	8.08 <mark>9</mark>	5.59 <mark>11</mark>	4.55 15	5.96 <mark>8</mark>	2.83 <mark>5</mark>	11 . 4 <mark>1</mark> 4	5.81 <mark>6</mark>	8.32 <mark>12</mark>	8.89 16	2.71 7	16.3 <mark>12</mark>	14.1 10	13.2 <mark>10</mark>	13.0 <mark>3</mark>	6.40 <mark>9</mark>	11.1 10

Deep Learning in Stereo

Learning the Matching Cost

Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches Zbontar and Lecun [CVPR 2015] [JMLR 2016]

- ConvNet compares two patches and predicts true vs. false match
- produces the disparity space image (DSI)
- trained on patches extracted from stereo ground truth
 - Positive pairs sampled directly from disparity maps
 - Negative pairs sampled with moderate perturbation
- Stereo Matching
 - Cross-based Cost Aggregation [Mei+ 2011]
 - Semi-Global Matching (SGM)

Local Feature Learning using Siamese Networks

- Verification Tasks [Bromley et al. 1994]
 - Given pairs of entities (faces, signatures, ...),
 - Predict match vs. non-match
- Learning Image Descriptors

Training Data: Stereo ground truth, CG datasets, Internet photos

Learning the Matching Cost

[Zbontar and Lecun JMLR 2016]

Accurate Architecture (MC-CNN acrt) [Siamese + Metric Network]

Learning the Matching Cost

[Zbontar and Lecun JMLR 2016]

Fast Architecture (MC-CNN fst) [Siamese Network]

Visualizing the DSI (NCC vs MC-CNN-fst)

Error map (w SGM)

Advantages of MC-CNN

- discriminates weak, low frequency textures
- Accurate at depth boundaries, slanted surfaces
- Ignores horizontal edges

MC-CNN-acrt vs. MC-CNN-fst

MC-CNN

Deep visual correspondence embedding model for stereo matching costs [Chen+ ICCV 2015]

- Also proposed faster Siamese network architecture
- Combines computation at two scale (full and half resolution)
- Smaller network, 100x faster than MC-CNN-acrt

Efficient Deep Learning for Stereo Matching [Luo+ CVPR 2016]

- Concurrent to [Chen+ 2015, Zbontar+ 2016]
- Tested small Siamese networks
- Multi-class classification loss instead of binary classification loss
- Analyzed receptive field size, showed larger is better

A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation [Mayer+ CVPR 2016]

- Contracting Part: convolutions
- Expanding Part (see FlowNet [Dosovitskiy+ ICCV 2015])
 - Up-convolutions (convolutional transpose)
 - Concatenated with feature maps from contracting part and the predicted disparity maps

58

A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation [Mayer+ CVPR 2016]

- Network trained on synthetic data (Flying Chairs3D) and fine-tuned on KITTI2015
- Observations in the paper: Fine-tuning on KITTI improves the results on that dataset but increases errors on other datasets.
 - KITTI 2015 has small disparity range
 - Fine-tuning hurts performance on other datasets with larger disparity range.

End-to-End Learning of Geometry and Context for Deep Stereo Regression [Kendall+ arxiv 2017]

- Extensive use of 3D convolutions; capture context
- Differentiable soft-argmin (first proposed by [..., Bengio] ICLR 2014)

60

End-to-End Learning of Geometry and Context for Deep Stereo Regression [Kendall+ arxiv 2017]

KITTI 2015 Stereo Benchmark

		All Pixels	5	Non-C	Runtime		
	D1-bg	D1-fg	D1-all	D1-bg	D1-fg	D1-all	(s)
MBM [11]	4.69	13.05	6.08	4.33	12.12	5.61	0.13
ELAS [15]	7.86	19.04	9.72	6.88	17.73	8.67	0.3
Content-CNN [32]	3.73	8.58	4.54	3.32	7.44	4.00	1.0
DispNetC [34]	4.32	4.41	4.34	4.11	3.72	4.05	0.06
MC-CNN [50]	2.89	8.88	3.89	2.48	7.64	3.33	67
PBCP [40]	2.58	8.74	3.61	2.27	7.71	3.17	68
Displets v2 [18]	3.00	5.56	3.43	2.73	4.95	3.09	265
GC-Net (this work)	2.21	6.16	2.87	2.02	5.58	2.61	0.9

61

New Trends

- Learning the matching cost:
 - MC-CNN [Zbontar + Lecun 2015], Chen+ 2015, Luo+ 2016
- Continuous MRFs: [Taniai+ 2017] (Rank 1 on Middlebury 2014!)
- Deep stereo regression (end to end training)
 - FlowNet [Dosovitskiy+ 2015], DispNet [Mayer+ 2016]
- Return of "Correlation"
 - DispNetCorr [Mayer+ 2016]
 - GC-Net [Kendall+ 2017]

- Return of "CRFs" (Hybrid CNN-CRF models)
 - Seki and Pollefeys 2017, Knobelreiter+ 2017

- Group A entries all use MC-CNN acrt but no other "deep learning" technique!
- Group B methods do NOT use MC-CNN acrt; they use ResNet, 3D convolutions, 3D deconvolutions, U-shaped Nets, RNNs; End to end learning is very popular!

CVPR 2017 Robust Vision Challenge workshop

Must train <u>one</u> model on combined training set and submit to all benchmarks!

	Stereo	MVS	Flow	Depth	Semantic	Instance
Middlebury	X	×	×			
KITTI	Х		×	X	×	×
MPI Sintel			×			
ETH3D	X	×				
HD1K			×			
ScanNet				X	×	×
Cityscapes					×	×
WildDash					×	×

ROB methods (current rankings)

METHOD	Deep learning?	Middlebury Rank	KITTI Rank	ETH3D Rank
NOSS_ROB	?	1	133	2
DN-CSS_ROB	\checkmark	40	40	1
PSMNet_ROB	\checkmark	60+	9	7
NaN_ROB	\checkmark	4	33	10
SGM		31	90+	21
total		80	144	39

Scene Flow

Fast Multi-frame Stereo Scene Flow with Motion Segmentation Taniai, Sinha, Sato CVPR 2017

Input: Stereo Video

Left

Right

Output

Disparity Map

Optical Flow

Moving Object segmentation

Fast Multi-frame Stereo Scene Flow with Motion Segmentation Taniai, Sinha, Sato CVPR 2017

KITTI 2015 Scene Flow Benchmark (November 2016)

Rank	Method	D1-bg	D1-fg	D1-all	D2-bg	D2-fg	D2-all	Fl-bg	Fl-fg	Fl-all	SF-bg	SF-fg	SF-all	Time
1	PRSM [43]	3.02	10.52	4.27	5.13	15.11	6.79	5.33	17.02	7.28	6.61	23.60	9.44	300 s
2	OSF [30]	4.54	12.03	5.79	5.45	19.41	7.77	5.62	22.17	8.37	7.01	28.76	10.63	50 min
3	FSF+MS (ours)	5.72	11.84	6.74	7.57	21.28	9.85	8.48	29.62	12.00	11.17	37.40	15.54	2.7 s
4	CSF [28]	4.57	13.04	5.98	7.92	20.76	10.06	10.40	30.33	13.71	12.21	36.97	16.33	80 s
5	PR-Sceneflow [42]	4.74	13.74	6.24	11.14	20.47	12.69	11.73	27.73	14.39	13.49	33.72	16.85	150 s
8	PCOF + ACTF [10]	6.31	19.24	8.46	19.15	36.27	22.00	14.89	62.42	22.80	25.77	69.35	33.02	0.08 s (GPU)
12	GCSF [8]	11.64	27.11	14.21	32.94	35.77	33.41	47.38	45.08	47.00	52.92	59.11	53.95	2.4 s

200 road scenes with multiple moving objects

Rank	SF-all	Time
1	9.44	300 s
2	10.63	50 min
3	15.54	2.7 s
4	16.33	80 s
5	16.85	150 s
8	33.02	0.08 s (GPU)
12	53.95	2.4 s

72

Breakdown of Running times

200 scenes from KITTI benchmark

2.72 sec per frame
Summary

- Semi Global Matching (SGM) and extensions
- Geometric and Semantic Priors
- Continuous optimization
- High Resolution Stereo
- Deep Learning in Stereo
- Stereoscopic Scene Flow