Efficient and Accurate 3D Scene Reconstruction and Object Pose Prediction

Sudipta Sinha
Microsoft Research

University of Illinois at Urbana-Champaign
May 9, 2018
Overview

- Structure from Motion
- Dense Stereo
- Photometric Stereo
- Scene Flow
- Multiview Tracking

Image-based Rendering

Aerial Mapping with UAVs

Image-based Camera Localization

Object 6D Pose

Augmented Reality
Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction
Stereo Matching

x

y

z

Left

Right

x
Stereo Matching

- x
- y
- z
- Left
- Right

Diagram showing stereo matching with images from left and right viewpoints.
Still Challenging

- Fore-shortening
- Specular
- Transparency, reflections
- Different lighting
- Dynamic range
- Untextured slanted surfaces

State of the art methods are still …

- Inaccurate in many corner cases
- Too slow for real-time, resource constrained systems
Stereo benchmarks

- KITTI (2012–15)
- Middlebury (2005)
- Middlebury (2014)
- Kim+ 2013
- ETH3D (2017)

Stereo benchmarks:

- **Middlebury** (2005)
- **Middlebury** (2014)
- **KITTI** (2012–15)
- **ETH3D** (2017)

Benchmarks for stereo vision with different resolutions:

- **Middlebury** (2005):
 - (5 — 6 MPixels)
- **KITTI** (2012–15):
 - (5 — 6 MPixels)
- **ETH3D** (2017):
 - (10 — 20 Mpixels)
Classical Methods (MRF inference)

- Find a per-pixel label (disparity map) D, by minimizing energy:

$$E(D) = E_{\text{data}}(D) + E_{\text{smooth}}(D)$$

$$= \sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$$

- Data (cost) term encodes matching costs
- Smoothness (cost) term encodes prior
- Discrete vs. Continuous labels
- Inference: Graph Cuts, Belief Propagation, PatchMatch-style optim.
Piecewise Planar Stereo

[Sinha, Steedly, Szeliski 2009]

Multiple Plane Detection

3D Line Reconstruction

MRF energy minimization via graph cuts

Structure from motion

Novel View
Piecewise Planar Stereo *Revisited* [Kowdle, Sinha, Szeliski 2012]

- Local plane fitting (more flexible)
- CRF models photo-consistency (stereo cue) and color segmentation (monocular cue)
- Learn color models per-surface
- Alternate between graph cuts and learning

Semi-global stereo (SGM) ➔ Find planes ➔ Label map

Depth map
Piecewise Planar Stereo *Revisited*
[Kowdle, Sinha, Szeliski 2012]
New Trends

- Learning the matching cost:
 - MC-CNN [Zbontar + Lecun 2015], Chen+ 2015, Luo+ 2016
- Continuous MRFs: [Taniai+ 2017] (Rank 1 on Middlebury 2014!)
- Deep stereo regression (end to end training)
 - FlowNet [Dosovitskiy+ 2015], DispNet [Mayer+ 2016]
- Return of “Correlation”
 - DispNetCorr [Mayer+ 2016]
 - GC-Net [Kendall+ 2017]
- Return of “CRFs” (Hybrid CNN-CRF models)
 - Seki and Pollefeys 2017, Knobelreiter+ 2017
Stereo Benchmark Rankings

Middlebury 2014

KITTI 2015
Group A and B have no methods in common!
Group A entries all use MC-CNN acrt but no other “deep learning” technique!
Group B methods do NOT use MC-CNN acrt; they use ResNet, 3D convolutions, 3D deconvolutions, U-shaped Nets, RNNs; End to end learning is very popular!
Conclusions

Must train **one** model on combined training set and submit to all benchmarks!
Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction
Semi Global Matching [Hirschmüller 2005]

- MRF inference (Graph Cuts, BP, ..) too slow
- SGM: Approximate even more; use heuristics
 - Widely used: assisted driving, robotics, aerial mapping …
 - Runs in real-time on FPGAs, GPUs …
Scanline Optimization (1D)

Minimize:

\[E(D) = \sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q) \]

- Consider the above problem on a 1D scanline.
- Compute an aggregated matching cost

\[L_r(p, d) = C_p(d) + \min_{d' \in D} (L_r(p - r, d') + V(d, d')) \]

- \(r = (1, 0) \): start at leftmost pixel, scan left
Semi Global Matching (SGM)

- For 8 directions
 - calculate aggregated costs

\[
L_r(p, d) = C_p(d) + \min_{d' \in D} (L_r(p - r, d') + V(d, d')).
\]

- Finally, sum the costs and select per-pixel minima.

\[
S(p, d) = \sum_r L_r(p, d)
\]

\[
D_p = \arg \min_d S(p, d).
\]
Semi Global Matching (SGM)
Semi Global Matching [Hirschmüller 2005]

Approximates 2D MRF using 1D optimization along 8 cardinal directions

\[
E(D) = \sum_p C_p(d_p) + \sum_{p,q \in \mathcal{N}} V(d_p, d_q)
\]

- related to Belief Propagation, TRW-S

[Drory et al. 2014]
Semi Global Stereo Matching with Surface Orientation Priors

3DV 2017

Daniel Scharstein
Middlebury College

Tatsunori Taniai
RIKEN, Tokyo

Sudipta Sinha
Microsoft Research
Semi Global Matching [Hirschmüller 2005]

Approximates 2D MRF using 1D optimization along 8 cardinal directions

\[E(D) = \sum_{p} C_p(d_p) + \sum_{p,q \in N} V(d_p,d_q) \]

\[\int 0 \quad \text{if } d = d' \]

- Fronto parallel bias
- Inaccurate on slanted untextured surfaces
SGM\(^*\) (quarter resolution)

SGM\(^*\) (full resolution (6 MP))

* Confidence measure used to prune uncertain pixels (black holes)
SGM-P: SGM with orientation priors

- [Scharstein, Taniai, Sinha, 3DV 2017]
- What if we knew the surface slant?
- Replace fronto-parallel bias with bias parallel to surface

Idea:
- *Rasterize* disparity surface prior (at arbitrary depth)
- Adjust $V(d, d')$ to follow discrete disparity “steps”
SGM-P: 2D orientation priors

\[V_S(d_p, d'_p) = V(d_p + j_p, d'_p) \]
SGM-P: 3D orientation priors

\[V_S(d_p, d'_p) = V(d_p + j_p(d_p), d'_p) \]

Jump locations vary with disparity
SGM-P: Where do we get priors?

- Matched features + triangulation
- Matched features + plane fitting
- Low-res matching + plane fitting
- Ground truth oracle
- Semantic analysis
- Manhattan-world assumptions
SGM-P: Results

Adirondack disparities error map

Motorcycle disparities error map

SGM

SGM-EPi

SGM-GS
SGM-P: Results

% Disparity Error > 2.0 (F)

% Error reduction over SGM (F)
SGM-P: Results

- Huge performance gains for slanted untextured scenes
- Soft constraint; inaccurate normals don’t hurt accuracy

![Graph showing % Disparity Error > 2.0 and % Error reduction over SGM](image)
Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction
Fast Multi-frame Stereo Scene Flow with Motion Segmentation

CVPR 2017

Tatsunori Taniai
RIKEN, Tokyo

Sudipta Sinha
Microsoft Research

Yoichio Sato
Univ. of Tokyo
Multi-frame Stereo Scene Flow

- Stereo video from moving stereo camera rig (calibrated)
- Scene Flow equivalent to stereo matching and optical flow estimation
Application

Object scene flow for autonomous vehicles
Menze and Geiger 2015

Action recognition by dense trajectories
Wang+ 2011

- Depth and flow sequences are useful in many applications
Motivation

Efficient, unified method for

- Stereo
- Optical Flow
- Moving object segmentation
- Visual Odometry (Camera ego-motion)
Main Idea: Dominant Rigid Scene Assumption

- Most of the scene is rigid; hence, camera motion determines the *rigid optical flow*.
- Given *rigid flow map*, only find regions with moving objects and recompute their flow.
Proposed Approach

Input

- Binocular stereo
- Visual odometry
- Epipolar stereo
- Initial motion segmentation
- Optical flow
- Flow fusion

Flow fusion

- Flow
- Motion seg.

Flow fusion

- I_t^0, I_t^1
- $I_t^0, I_t^0 + \tilde{D}$
- $I_t^0, I_t^0 + P$
- $I_t^0, I_t^0 + P, D$
- $I_t^0, I_t^0 + \tilde{S}$
- $I_t^0, I_t^0 + F_{rig}, F_{non}$

Flow fusion

- \tilde{D}
- P
- D
- \tilde{S}
- F_{rig}
- F_{non}
Results – KITTI 2015 Scene Flow Benchmark (Nov 2016)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Method</th>
<th>D1-bg</th>
<th>D1-fg</th>
<th>D1-all</th>
<th>D2-bg</th>
<th>D2-fg</th>
<th>D2-all</th>
<th>Fl-bg</th>
<th>Fl-fg</th>
<th>Fl-all</th>
<th>SF-bg</th>
<th>SF-fg</th>
<th>SF-all</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PRSM [43]</td>
<td>3.02</td>
<td>10.52</td>
<td>4.27</td>
<td>5.13</td>
<td>15.11</td>
<td>6.79</td>
<td>5.33</td>
<td>17.02</td>
<td>7.28</td>
<td>6.61</td>
<td>23.60</td>
<td>9.44</td>
<td>300 s</td>
</tr>
<tr>
<td>2</td>
<td>OSF [30]</td>
<td>4.54</td>
<td>12.03</td>
<td>5.79</td>
<td>5.45</td>
<td>19.41</td>
<td>7.77</td>
<td>5.62</td>
<td>22.17</td>
<td>8.37</td>
<td>7.01</td>
<td>28.76</td>
<td>10.63</td>
<td>50 min</td>
</tr>
<tr>
<td>3</td>
<td>FSF+MS (ours)</td>
<td>5.72</td>
<td>11.84</td>
<td>6.74</td>
<td>5.77</td>
<td>12.28</td>
<td>9.85</td>
<td>8.48</td>
<td>29.62</td>
<td>12.00</td>
<td>11.17</td>
<td>37.40</td>
<td>15.54</td>
<td>2.7 s</td>
</tr>
<tr>
<td>8</td>
<td>PCOF + ACTF [10]</td>
<td>6.31</td>
<td>19.24</td>
<td>8.46</td>
<td>19.15</td>
<td>36.27</td>
<td>22.00</td>
<td>14.89</td>
<td>62.42</td>
<td>22.80</td>
<td>25.77</td>
<td>69.35</td>
<td>33.02</td>
<td>0.08 s (GPU)</td>
</tr>
<tr>
<td>12</td>
<td>GCSF [8]</td>
<td>11.64</td>
<td>27.11</td>
<td>14.21</td>
<td>32.94</td>
<td>35.77</td>
<td>33.41</td>
<td>47.38</td>
<td>45.08</td>
<td>47.00</td>
<td>52.92</td>
<td>59.11</td>
<td>53.95</td>
<td>2.4 s</td>
</tr>
</tbody>
</table>

200 road scenes with multiple moving objects
Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction
Submodular Trajectory Optimization for Aerial 3D Scanning

ICCV 2017

Mike Roberts1,2 Debadeepta Dey2 Anh Truong3 Sudipta Sinha2
Shital Shah2 Ashish Kapoor2 Pat Hanrahan1 Neel Joshi2

1Stanford University 2Microsoft Research 3Adobe Research
Acquiring imagery using drones
Multi-view Stereo Reconstruction
Manual Planning Prior to Capture

- Waypoints planned by human experts …
 - Several redundant flight trajectories were flown
- 3,500 images from 6 days with 19 ten-minute flights
- Projeto Redentor (Pix4D whitepaper, 2015)
Our Goal

- Automatically generate optimized trajectories for 3D scanning using drones, such that
 1. the acquired images will produce an accurate 3D model when processed using a Multi View Stereo (MVS) algorithm.
 2. the UAV makes best use of its limited flight time budget.

- Processing happens post flight.
- Battery typically lasts 15—20 minutes.
Related Work

- **View selection** [Hornung+ 2011]
 - First, acquire dense imagery
 - Later, select subset & process

- **Next-best-view planning**
 - Information-gain maximization [Isler+ 2016]
 - Robotic RGB-D 3D scanning [Wu+ 2014]
 - No travel budget constraints

- **Real-time Drone view planning** [Mostegel+ 2016]
 - Greedy technique; heuristic-based
Diverse Viewpoints help Multi View Stereo

Preference for
- diverging viewing angles
- close-up views
- fronto parallel views of surfaces
Coverage Measure

For a surface point S observed from multiple cameras, we define coverage as the area of the union of all the blue disks on a hemisphere.
Similarly, we define coverage for multiple surface points observed from multiple camera viewpoints.
Method

- Evaluating coverage function requires knowledge of scene geometry
- Thus, we follow a two-staged procedure.

1. Fly an easy-to-generate trajectory;
2. Compute coarse reconstruction (SFM \rightarrow MVS \rightarrow meshing)
3. Plan *optimized* trajectory based on mesh from step 2.
4. Fly trajectory computed in step 3.
5. Run SFM + MVS on images from step 1 and 4.
Planning Optimized Trajectories

Graph of all possible camera location (and orientation); edge weights are Euclidean distances between locations.

Propose to solve the problem in two steps.

1. Solve optimal set of orientations; ignoring path constraints

2. Then, find the set of locations by solving a graph orienteering problem
Solving for Camera Orientations

- Coverage set function is submodular
 - Adding new elements to an existing set gives diminishing returns
- Cardinality and Mutual Exclusion Constraint
 - Select exactly one look-at vector at each position
- Constrained submodular maximization
 - Always, pick the next best element with the most marginal reward
 - Greedy algorithm; good theoretical approximation guarantee
Solving for Camera Positions

- Graph Orienteering Problem
 - NP-Hard; related to TSP and Knapsack
 - Find short paths that let you collect most rewards (at nodes).
- In standard orienteering, rewards are additive.
- But, our reward function is submodular, not additive!
- Hence, we must solve a submodular orienteering problem.
Solving for Camera Positions

- Choose a good sub-gradient
 (additive approximation)
 for our submodular function

- Approximation yields an instance of the orienteering problem

\[
\text{maximize } \sum c(s) \\
\text{subject to } T(S) < B
\]

- Solve as an integer linear program (ILP)
Results

- Pix4D for 3D reconstruction
 - Outputs texture-mapped 3D model
- Baselines:
 - **Overview**: Lawn-mower pattern
 - **Random**:
 - recover coarse 3d model; estimate free space.
 - select random points in free space.
 - compute TSP tour.
Results

Our computed trajectories visualized in Google Earth

Barn

MSR Redmond
Results
Insert video (ICCV supplementary video here)
Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction
3D Recognition, 2D-3D Model Alignment

Given a RGB image (with known intrinsics), recognize the objects and predict their 3D position and orientation within the scene.

Classical methods:

- Recognizing Image Patches
 - Scale, Affine invariant features
 - Geometric verification (rigid scenes)

 Lowe 2001

- Rothganger+ 2005

 - Worked for textured, distinctive objects
 - Required a small # of training images

 Lepetit+ 2005
Object 6D Pose Estimation

Given a RGB image (with known intrinsics), recognize the objects and predict their 3D position and orientation within the scene.

RGB-D methods:
- Lai+ 2010
- Hinterstoisser+ 2012
- Brachmann+ 2014, 2016

- Classical Object Recognition
- Fast Image Retrieval

CNN methods:
- Rad + Lepetit 2017
- Kehl+ 2017
- Xiang+ 2017
- Tekin+ 2018
- Oberweger+ 2018

- Global deep feature representations
- Not much use of geometry
- Promising for small, texture-less objects
- Huge training set needed
Texture-less Object 6D Pose Datasets

LINEMOD [2012]
15 objects

T-LESS [2017]
30 objects

YCB-VIDEO [2018]
21 objects
Deep 6D object pose estimation

- BB8 [Rad and Lepetit 2017]

- CNN$_1$ (2d detector)
- cropped image
- CNN$_2$ (pose estimator)
- CNN$_3$ (pose refinement)
- 6D pose
Our Method

- Single-shot 2D object detection (YOLO, SSD)
- Our CNN predicts 2D projections of 3D bounding box vertices (and the centroid). We run PnP solver on 9 2D-3D correspondences.
- Accurate, fast (50-90 fps); detects multiple objects in one pass.
Our Method

Training:
- ground truth 2D coordinates of the 9 control points are the targets
- modify YOLO loss function (for confidence estimation)
- data augmentation

Testing:
- Subpixel refinement
- PnP (RANSAC, least squares)
CNN Architecture

Convolutional 3x3x32
Max-pool 2x2/2
Conv.
3x3x64
Max-pool 2x2/2
Convolutional 3x3x128
1x1x64
3x3x128
Max-pool 2x2/2
Convolutional 3x3x256
1x1x128
3x3x256
Max-pool 2x2/2
Convolutional 3x3x512
1x1x256
3x3x512
1x1x256
3x3x512
Max-pool 2x2/2
Convolutional 3x3x1024
1x1x512
3x3x1024
1x1x512
3x3x1024
3x3x1024
Merge
Convolutional 3x3x1024
Convolutional 1x1x(9x2+1+C)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Output Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>416 x 416</td>
</tr>
<tr>
<td>1</td>
<td>208 x 208</td>
</tr>
<tr>
<td>2</td>
<td>104 x 104</td>
</tr>
<tr>
<td>3</td>
<td>52 x 52</td>
</tr>
<tr>
<td>4</td>
<td>26 x 26</td>
</tr>
<tr>
<td>5</td>
<td>512 x 512</td>
</tr>
<tr>
<td>6</td>
<td>128 x 128</td>
</tr>
<tr>
<td>7</td>
<td>64 x 64</td>
</tr>
<tr>
<td>8</td>
<td>256 x 256</td>
</tr>
<tr>
<td>9</td>
<td>1024 x 1024</td>
</tr>
</tbody>
</table>
CNN Architecture

- Convolutional 3x3x32
- Max-pool 2x2/2 Conv. 3x3x64
- Max-pool 2x2/2 Convolutional 3x3x128 1x1x64 3x3x128
- Max-pool 2x2/2 Convolutional 3x3x256 1x1x128 3x3x256
- Max-pool 2x2/2 Convolutional 3x3x512 1x1x256 3x3x512 1x1x256 9x3x512
- Max-pool 2x2/2 Convolutional 3x3x1024 1x1x512 3x3x1024 1x1x512 3x3x1024 3x3x1024
- Merge
- Convolutional 3x3x1024
- Convolutional 1x1x(9x2+1+C)
Results on LineMOD dataset

- Two accuracy metrics (2D image projection, 3D model overlap).
- Percentage of test images where the error was lower than specified thresholds.

2D metric

<table>
<thead>
<tr>
<th>Method</th>
<th>w/o Refinement</th>
<th>w/ Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ape</td>
<td>-</td>
<td>95.3</td>
</tr>
<tr>
<td>Benchwise</td>
<td>-</td>
<td>80.0</td>
</tr>
<tr>
<td>Cam</td>
<td>-</td>
<td>80.9</td>
</tr>
<tr>
<td>Can</td>
<td>-</td>
<td>84.1</td>
</tr>
<tr>
<td>Cat</td>
<td>-</td>
<td>97.0</td>
</tr>
<tr>
<td>Driller</td>
<td>-</td>
<td>74.1</td>
</tr>
<tr>
<td>Duck</td>
<td>-</td>
<td>81.2</td>
</tr>
<tr>
<td>Eggbox</td>
<td>-</td>
<td>87.9</td>
</tr>
<tr>
<td>Glue</td>
<td>-</td>
<td>89.0</td>
</tr>
<tr>
<td>Holepuncher</td>
<td>-</td>
<td>90.5</td>
</tr>
<tr>
<td>Iron</td>
<td>-</td>
<td>78.9</td>
</tr>
<tr>
<td>Lamp</td>
<td>-</td>
<td>74.4</td>
</tr>
<tr>
<td>Phone</td>
<td>-</td>
<td>77.6</td>
</tr>
<tr>
<td>Average</td>
<td>69.5</td>
<td>83.9</td>
</tr>
</tbody>
</table>

3D metric

<table>
<thead>
<tr>
<th>Method</th>
<th>w/o Refinement</th>
<th>w/ Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ape</td>
<td>-</td>
<td>27.9</td>
</tr>
<tr>
<td>Benchwise</td>
<td>-</td>
<td>62.0</td>
</tr>
<tr>
<td>Cam</td>
<td>-</td>
<td>40.1</td>
</tr>
<tr>
<td>Can</td>
<td>-</td>
<td>48.1</td>
</tr>
<tr>
<td>Cat</td>
<td>-</td>
<td>45.2</td>
</tr>
<tr>
<td>Driller</td>
<td>-</td>
<td>58.6</td>
</tr>
<tr>
<td>Duck</td>
<td>-</td>
<td>32.8</td>
</tr>
<tr>
<td>Eggbox</td>
<td>-</td>
<td>40.0</td>
</tr>
<tr>
<td>Glue</td>
<td>-</td>
<td>27.0</td>
</tr>
<tr>
<td>Holepuncher</td>
<td>-</td>
<td>42.4</td>
</tr>
<tr>
<td>Iron</td>
<td>-</td>
<td>67.0</td>
</tr>
<tr>
<td>Lamp</td>
<td>-</td>
<td>39.9</td>
</tr>
<tr>
<td>Phone</td>
<td>-</td>
<td>35.2</td>
</tr>
<tr>
<td>Average</td>
<td>32.3</td>
<td>43.6</td>
</tr>
</tbody>
</table>
Results on LineMOD dataset

- Running Times:
 - On TitanX or similar GPU.
 - using cuDNN

<table>
<thead>
<tr>
<th>Method</th>
<th>Overall speed for 1 object</th>
<th>Refinement runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachmann et al. [2]</td>
<td>2 fps</td>
<td>100 ms/object</td>
</tr>
<tr>
<td>Rad & Lepetit [25]</td>
<td>3 fps</td>
<td>21 ms/object</td>
</tr>
<tr>
<td>Kehl et al. [10]</td>
<td>10 fps</td>
<td>24 ms/object</td>
</tr>
<tr>
<td>OURS</td>
<td>50 fps</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>2D projection metric</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>416 × 416</td>
<td>89.71</td>
<td>94 fps</td>
</tr>
<tr>
<td>480 × 480</td>
<td>90.00</td>
<td>67 fps</td>
</tr>
<tr>
<td>544 × 544</td>
<td>90.37</td>
<td>50 fps</td>
</tr>
<tr>
<td>688 × 688</td>
<td>90.65</td>
<td>43 fps</td>
</tr>
</tbody>
</table>

When input image is resized, our method remains accurate and runs much faster.
Conclusions

- State of the art in stereo matching; new challenges
- Improvements to Semi Global Matching
 - Incorporating soft surface orientation priors
- Fast scene flow with motion segmentation
- Camera path planning for improved multi-view stereo
- Deep single shot 6D object pose estimation
 - CNN architecture conceptually simpler (~YOLO architecture) and faster