Efficient and Accurate 3D Scene Reconstruction and Object Pose Prediction

Sudipta Sinha Microsoft Research

University of Illinois at Urbana-Champaign May 9, 2018

Overview

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction

Stereo Matching

Stereo Matching

Still Challenging

Fore-shortening

Specular

Transparency, reflections

Different lighting

Dynamic range

Untextured slanted surfaces

- State of the art methods are still ...
 - Inaccurate in many corner cases
 - Too slow for real-time, resource constrained systems

Stereo benchmarks

Kim+ 2013

Middlebury (2005)

(5 — 6 MPixels)

(10-20 Mpixels)

ETH3D (2017)

Classical Methods (MRF inference)

Find a per-pixel label (disparity map) D, by minimizing energy:

$$E(D) = E_{data}(D) + E_{smooth}(D)$$
$$= \sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$$

- Data (cost) term encodes matching costs
- Smoothness (cost) term encodes prior
- Discrete vs. Continuous labels
- Inference: Graph Cuts, Belief Propagation, PatchMatch-style optim.

Piecewise Planar Stereo

[Sinha, Steedly, Szeliski 2009]

Multiple Plane Detection

3D Line Reconstruction

Novel View

Piecewise Planar Stereo <u>Revisited</u>

Local plane fitting (more flexible)

[Kowdle, Sinha, Szeliski 2012]

- CRF models photo-consistency (stereo cue) and color segmentation (monocular cue)
- Learn color models per-surface
- Alternate between graph cuts and learning

Semi-global stereo (SGM)

Find planes

Depth map

Label map

Piecewise Planar Stereo <u>Revisited</u>

[Kowdle, Sinha, Szeliski 2012]

New Trends

- Learning the matching cost:
 - MC-CNN [Zbontar + Lecun 2015], Chen+ 2015, Luo+ 2016
- Continuous MRFs: [Taniai+ 2017] (Rank 1 on Middlebury 2014!)
- Deep stereo regression (end to end training)
 - FlowNet [Dosovitskiy+ 2015], DispNet [Mayer+ 2016]
- Return of "Correlation"
 - DispNetCorr [Mayer+ 2016]
 - GC-Net [Kendall+ 2017]

- Return of "CRFs" (Hybrid CNN-CRF models)
 - Seki and Pollefeys 2017, Knobelreiter+ 2017

Stereo Benchmark Rankings

Middlebury 2	2014
--------------	------

Mouseover the table cells to see the produced disparity map. Clicking a cell will blink the ground truth for comparison. To change the table type, click the links below. For more information, please see the description of new features.

Submit and evaluate your own results. See snapshots of previous results. See the evaluation v.2 (no longer active).

Set: test dense test sparse training dense training sparse

Metric: bad 0.5 bad 1.0 bad 2.0 bad 4.0 avgerr rms A50 A90 A95 A99 time time/MP time/GD Mask: nonocc all

□ plot selected □ show invalid Reset sort Reference list

	bed 2.0 (%)			Weight															
Date	Name	F	tes	Avg	Austr	AustrP	Bicyc2	Class	ClassE	Compu	Crusa	CrusaP	Djemb	DjembL	Hoops	Livgrm	Nkuba	Plants	Stairs
		- 1			nd 290	nt 290	nt 250	nd: 610	nd: 610	MP: 1.5 nd: 256	MP 5.5 nd 800	MP 5.5 nd 800	MP: 57 of: 320	nd 320	nd: 410	nd: 320	nd: 570	nd 320	nd 450
		- 1			im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1
					nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc
-98		1		₽ ₽	- B B	88	-96	40	-88	- 88	<u>48</u>	-88	<u>48</u>	-88	<u>48</u>	<u>48</u>	98	98	88
03/06/18	NOSS	용.	н	5.04 1	3.57 2	2.84 3	3.99 2	1.93 1	5.15 1	3.34 1	3.32 1	3.15 1	2.32 2	8.55 2	7.45 1	7.06 2	12.5 2	5.20 3	10.0 7
06/22/17	LocalExp	割	н	5.43 2	3.65 3	2.87 4	2.98 1	1.99 2	5.59 2	3.37 2	3.48 3	3.35 2	2.05 1	10.3 3	9,75 3	8.57 \$	14.4 10	5.40 4	9.55 \$
01/24/17	3DMST	8	н	5.92 3	3.71 4	2.78 2	4.75 4	2.72 5	7.36 5	4.28 3	3.44 2	3.76 3	2.35 3	12.6 4	11.5 \$	8.56 4	14.0 *	5.35 \$	8.87 4
03/10/17	MC-CNN+TDSR	ŝ	F	6.35 4	5.45 13	4.45 17	6.80 18	3.46 14	10.7 12	6.05 10	5.01 9	5.19 9	2.627	10.8 4	9.62 2	6.59 1	11.4 1	6.01 10	7.04 1
05/12/16	PMSC	ġ.	н	6.716	3.46 1	2.68 1	6.19 14	2.54 3	6.92 3	4.54 4	3.96 4	4.04 5	2.37 4	13.1 10	12.3 6	12.27	16.2 18	5.88 9	10.8 9
10/19/16	LW-CNN	율	н	7.04 6	4.65 7	3.95 9	5.30 9	2.63 4	11.2 16	5.417	4.32 6	4.22 6	2.43 6	12.2 7	13.4 9	13.6 15	14.8 13	4.72 1	12.0 14
04/12/16	MeshStereoExt	8	н	7.087	4.41 6	3.98 11	5.40 10	3.17 10	10.0 7	6.23 12	4.62 7	4.77 8	3.49 19	12.7 9	12.47	10.4 •	14.5 11	7.80 17	8.85 3
10/12/17	FEN-D2DRR	ġ.	н	7.23 8	4.68 8	4.11 13	5.03 6	3.03 2	8.42 4	6.05 10	4.90 8	5.32 10	3.20 16	11.5 4	14.1 11	13.4 14	13.9 7	5.06 2	14.3 19
05/28/16	APAP-Stereo	8	н	7.26 9	5.43 12	4.91 23	5.11 8	5.17 19	21.6 27	6.99 15	4.31 5	4.23 7	3.24 18	14.3 13	9.78 4	7.32 3	13.4 \$	6.30 11	8.46 2
03/11/18	SGM-Forest	돰	н	7.37 10	4.71 9	3.69 \$	4.93 5	3.18 11	11,1 14	5.37 5	5.57 11	5.81 13	2.65 \$	14.5 14	13.2 *	13.1 11	14.8 14	5.63 7	11.2 12
01/19/16	NTDE	8	н	7.44 11	5.72 17	4.36 16	5.92 12	2.837	10.4 9	5.71 8	5.30 to	5.54 11	2.40 \$	13.5 11	14.1 11	12.6 1	13.9 4	6.39 12	12.2 15
02/28/18	FDR	ŝ	н	7.69 12	5.41 11	4.22 14	4.20 3	2.73 6	10.2 8	5.40 6	6.40 12	5.76 12	4.72 26	11.2 5	15.4 16	13.4 13	16.5 3	5.22 4	13.0 17
08/28/15	i 🗹 MC-CNN-acrt	8	н	8.08 13	5.59 16	4.55 20	5.96 13	2.837	11.4 17	5.81 9	8.32 19	8.89 19	2.71 9	16.3 16	14.1 13	13.2 12	13.0 4	6.40 13	11.1 11
11/03/15	MC-CNN+RBS	율	н	8.42 14	6.05 19	5.16 27	6.24 15	3.27 12	11.1 14	6.36 13	8.87 18	9.83 25	3.21 17	15.1 15	15.9 18	12.8 10	13.5 6	7.04 15	9.99 6
09/13/16	SNP-RSM	ŝ	н	8.75 15	5.46 14	4.85 21	6.50 17	3.37 13	10.4 10	7.31 17	8.73 17	9.37 22	3.58 20	14.3 12	14.7 14	14.9 18	12.8 3	10.1 22	10.8 10
12/11/17	OVOD	器	н	8.87 14	4.74 10	3.64 7	5.51 11	4.82 18	12.8 20	6.51 14	9.91 21	9.96 26	3.13 13	16.6 17	14.8 15	14.1 16	15.4 14	6.92 14	13.2 18
01/21/16	MCCNN_Layout	8	н	8.94 17	5.53 15	5.63 32	5.06 7	3.59 15	12.6 12	7.23 14	7.53 15	8.86 18	5.79 35	23.0 22	13.6 10	15.0 19	14.7 12	5.85 *	10.4 =
01/26/16	MC-CNN-fst	8	н	9.47 🛤	7.35 24	5.07 26	7.18 20	4.71 17	16.8 24	8.47 20	7.37 14	6.97 14	2.82 10	20.7 21	17.4 21	15.4 21	15.1 15	7.90 14	12.6 16

		_	0	\sim			Environment	Compare
	KII		- 7	1	11	5	1 core @ 2.8 ohz (C/C++)	
		11	4	J.	1	J	Hvidia QYX Yitan Ap	
							OPU @ 2.5 Ohz (Python)	
4	Karvfan	2.54 8	1458	2.36.8	100.00 N	0.22 s	midia OTX 1080 TI	0
	ettignal Se	2.10 8	2.64 8	1.56.9	100.00 M	0.251	evida titas s Puthoni	
	Married IV		1.010	7.44.10	200.00 k		baldin Tites v (Bascal)	
L Lies	g, Y. Farg, Y. Gas and H. Liu: Long	ong by Digerty Game	tim frond	Feature Co	The set and	preprint articult	2.04094.2017.	1.4
7	Segliteres	2.16 8	4.02.8	2.47.8	100.00 N	0.6 5	svidia otx titan x	
8	Retter	2.35 8	3.23 %	2,52.8	120.00 N	0,1 6	widle Titan X (Pascal)	
9	DeepStereo	2.16.8	4,72.8	2.59.8	100.00 N	0.93	Titlan x	
10	327	2.22.8	4.55 %	2.61 8	100.00 N	0.381	widla OTX 1080 TI	
11	685	celle 2.46 H	3.55 N	2.67.8	100.00 N	0.47 k	midia OTX 1080	
i, Parg	, M. Sun, J. Rev. C. Yang and Q. Yo	an. <u>Conceller i enklusi line</u>	raing A loss	Si Age come	dationi mold	setsual in nor	es nataling, ICCV Workshop on Geometry Rents Deep Lean	wg 2017.
12	PSWiet_RDB	2.25 N	5,34 8	2.76.9	100.00 N	0.411	1 core @ 2.6 Ghz (Python)	0
13	DeepStereo	2,15 8	5.38 8	2,77 %	100.00 N	0.9 5	Titlan K	
54	20780358(R)	2.27 8	5.50 N	2.80 %	105.00 N	1.51	Tiblan x	
15	95-1957	2.21.8	6.15.8	1.67.8	100.00 M	0.91	swidia GTX Titael X	
1, Xeni Contern	Bell, H. Martironyen, S. Daapuna, P. Wan-on Campilion: Violate (ICCV) 201	 Henry, R. Kennedy, A. (7) 	Bachinch in	d A By B	d to-Gid Lear	ing of Geometry of	ed Castest for Deep Steves Repeakes. Proceedings of the	Stenational
14	LineSterns	2.70 8	4.453	1.99.8	100.00 H	0.42.6	Hvidia OTX Titan Xp	
C Song	K. Day, H. Hu and L. Tang: Educ	Steren: A Cartest Hore	stel kesh	of Pyramid I	letwork the Ste	the Matching of R	in preprint active 1802.251% 2018.	
1.40	P. Warg, Y. Ling, B. Zhao, Y. Wet, -	J. Forg and W. Shir Lat	Fairt Corn	and be for	TOD. DO N	r Terry Matching	BEEL Conference on Computer Vision and Patient Recognit	Date (CVPR) 2018.
18	RecRestiet	2.46.8	6.30 8	1.10.8	100.00 N	.11	@ (writin GTX Titan X)	
19	MSP14at	2.70 8	9.36.9	3.15.8	100.00 8	0.15 1	Heridia GYX 1080 TI	
20	DAR	2.50 8	6.04.8	1.18.8	100.00 H	0.41	southa OTX Tittan X	п
L Gele	ris and N. Kernelakis: Depet. Real	ace, Ratives Gree Struct	and had	tan for Per	d Whee Laberty	a sido prepint a	cov. te12.04793 30%.	
21	HS-OAHS	2.55.9	5.54.8	121.8	100.00 N	0.9 1	writia GTX Titaet X	
22	mustereonet	code 2.47 h	5.99.9	3.22.8	100.00 N	0.65	INVIDIA TITAN XD	
2212	lyansky, A. Kananev and S. Birdeli	eld <u>Di De kiportero</u> n	al lines h	Accession in	April Distance	n. An Difficient Se	the Sector Hand Deep Mean of Helphale Approach. In West property	0.0002.00119
23	£285-Het	2.61 8	6.43.9	3.25 8	100.00 N	0.5 5	Hvidia GTX 1080 (Python)	
24	SSHECK	3.16 8	4.11.8	3.32.8	100.00 8	0.09 s	1 corie 🗄 2.5 Ghz (C/C++)	
28	212	2.62 8	6.55 %	3.52.4	100.00 N	0.9 8	1 starte @ 2.6 Ghtt (C/C++)	
28	Secure	2.70 8	6.52.8	1.409	100.00 %	0.81	P100	0
. Dra	g, Y. Del and H. Lin Self Supervised	Literation for Scenes the	the peter	Sett Imagine	CRAMING AND	- 1756, 506 50 2211		
27	L-ResAutch	code 2,72 m	6.55 R	3.42.8 exhi mel lh	100.00 k	49.1	1 (D/D # 1.5 OFE (C/C++)	Ш
28	Diplets v2	cade 3.00 h	5.56.8	3.45 8	100.00 N	265 5	+8 cores @ 2.0 Ohz (watlab + C/C++)	
T. G.29	ey and A. Geiger: Depirts: Resident	Carrie Archigalline and	OR OTHER D	meletige C	antenece an C	languater Visitan an	d Pataen Recognition (CVPR) 2015.	
29	DSCH44	2.88 8	6.60.8	3,50 %	100.00 H	0.35 1	midla OTX Titan X	
30	voo-onp	3.07 8	5.39 N	1.54.8	100.00 N	0.31 8	GPU @ 2.5 Oht (C/C++)	
21	CHIEF+50H	2,78.9	7.65%	3.60 %	100.00 %	71.8	TESLA HADC	
12	PACE AND A PACE	2 46 B	A 74 N	A AL M	100.00.8	A& S	weight the many 2016.	0
i ski	and M. Publicy: Patch Inter Card	Marco Prediction for D	and Dane	ta Neo- Bris	d- Harline Vis	a Caterna (b	60C) 20%.	
33	SOM-HEE	2.00 8	8.84.8	3.00 %	100.00 M	671	Titao x	
. 541	and N. Poliefeyc 224 Meter Sect-	Oldei Restan Wit Is	NA SERVE	Mr. College 20	eT.			
1	CONT. ACC	3.60.4	4.41.8		1960,00 R	0.043	minute of A Tillan A	
25	COMMET.	2,91.8	2.67 %	3,67.%	100.00 N	0,15	t core g z.e Obz (C/C++)	U
28	MC-CH4-M071	CDEC 2.89 N	8.88 %	3.49.8	100.00 N	67.1	invidia 67X Titan X (CuDA, Las/Torch?)	

- Group A and B have no methods in common!
- Group A entries all use MC-CNN acrt but no other "deep learning" technique!
- Group B methods do NOT use MC-CNN acrt; they use ResNet, 3D convolutions, 3D deconvolutions, U-shaped Nets, RNNs; End to end learning is very popular!

Conclusions

Must train <u>one</u> model on combined training set and submit to all benchmarks!

	Stereo	MVS	Flow	Depth	Semantic	Instance
Middlebury	X	×	×			
KITTI	X		×	×	×	×
MPI Sintel			×			
ETH3D	X	×				
HD1K			×			
ScanNet				×	×	×
Cityscapes					×	×
WildDash					×	×

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction

Semi Global Matching [Hirschmüller 2005]

- MRF inference (Graph Cuts, BP, ..) too slow
- SGM: Approximate even more; use heuristics
 - Widely used: assisted driving, robotics, aerial mapping …
 - Runs in real-time on FPGAs, GPUs …

Scanline Optimization (1D)

Minimize:

$$E(D) = \sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$$

- Consider the above problem on a 1D scanline.
- Compute an aggregated matching cost

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d') + V(d,d')).$$

• $\mathbf{r} = (1, 0)$: start at leftmost pixel, scan left

Semi Global Matching (SGM)

- For 8 directions
 - calculate aggregated costs

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d') + V(d,d')).$$

Finally, sum the costs and select per-pixel minima.

$$S(\mathbf{p}, d) = \sum_{\mathbf{r}} L_{\mathbf{r}}(\mathbf{p}, d)$$
$$D_{\mathbf{p}} = \arg\min_{d} S(\mathbf{p}, d).$$

Semi Global Matching (SGM)

Semi Global Matching [Hirschmüller 2005]

Approximates 2D MRF using 1D optimization

along 8 cardinal directions

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

related to Belief Propagation, TRW-S
 [Drory et al. 2014]

Semi Global Stereo Matching with Surface Orientation Priors

3DV 2017

Daniel Scharstein

Middlebury College

Tatsunori Taniai RIKEN, Tokyo Sudipta Sinha Microsoft Research

Semi Global Matching [Hirschmüller 2005]

Approximates 2D MRF using 1D optimization along 8 cardinal directions

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

$$\int 0 \quad \text{if } d = d'$$

Fronto parallel bias

Inaccurate on slanted untextured surfaces

SGM^{*} (quarter resolution)

SGM^{*} (full resolution (6 MP))

* Confidence measure used to prune uncertain pixels (black holes)

Ground Truth

SGM-P: SGM with orientation priors

[Scharstein, Taniai, Sinha, 3DV 2017]

- What if we knew the surface slant?
- Replace fronto-parallel bias with bias parallel to surface

Idea:

- Rasterize disparity surface prior (at arbitrary depth)
- Adjust V(d, d') to follow discrete disparity "steps"

SGM-P: 2D orientation priors

SGM-P: 3D orientation priors

vary with disparity

SGM-P: Where do we get priors?

- Matched features + triangulation
- Matched features + plane fitting
- Low-res matching + plane fitting
- Ground truth oracle
- Semantic analysis
- Manhattan-world assumptions

SGM-P: Results

SGM-P: Results

SGM-P: Results

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction

Fast Multi-frame Stereo Scene Flow with Motion Segmentation

CVPR 2017

Tatsunori Taniai RIKEN, Tokyo Sudipta Sinha Microsoft Research Yoicho Sato Univ. of Tokyo

Multi-frame Stereo Scene Flow

- Stereo video from moving stereo camera rig (calibrated)
- Scene Flow equivalent to stereo matching and optical flow estimation

Application

Object scene flow for autonomous vehicles Menze and Geiger 2015

Action recognition by dense trajectories Wang+ 2011

Depth and flow sequences are useful in many applications

Motivation

Efficient, unified method for

- Stereo
- Optical Flow
- Moving object segmentation
- Visual Odometry (Camera ego-motion)

Disparity Map

Optical Flow

Moving Object Segmentation

Main Idea: Dominant Rigid Scene Assumption

- Most of the scene is rigid; hence, camera motion determines the *rigid optical flow*.
- Given *rigid flow map*, only find regions with moving objects and recompute their flow.

Proposed Approach

Results – KITTI 2015 Scene Flow Benchmark (Nov 2016)

Rank	Method	D1-bg	D1-fg	D1-all	D2-bg	D2-fg	D2-all	Fl-bg	Fl-fg	Fl-all	SF-bg	SF-fg	SF-all	Time
1	PRSM [43]	3.02	10.52	4.27	5.13	15.11	6.79	5.33	17.02	7.28	6.61	23.60	9.44	300 s
2	OSF [30]	4.54	12.03	5.79	5.45	19.41	7.77	5.62	22.17	8.37	7.01	28.76	10.63	50 min
3	FSF+MS (ours)	5.72	11.84	6.74	7.57	21.28	9.85	8.48	29.62	12.00	11.17	37.40	15.54	2.7 s
4	CSF [28]	4.57	13.04	5.98	7.92	20.76	10.06	10.40	30.33	13.71	12.21	36.97	16.33	80 s
5	PR-Sceneflow [42]	4.74	13.74	6.24	11.14	20.47	12.69	11.73	27.73	14.39	13.49	33.72	16.85	150 s
8	PCOF + ACTF [10]	6.31	19.24	8.46	19.15	36.27	22.00	14.89	62.42	22.80	25.77	69.35	33.02	0.08 s (GPU)
12	GCSF [8]	11.64	27.11	14.21	32.94	35.77	33.41	47.38	45.08	47.00	52.92	59.11	53.95	2.4 s

200 road scenes with multiple moving objects

Rank	SF-all	Time
1	9.44	300 s
2	10.63	<u>50 min</u>
3	15.54	2.7 s
4	16.33	80 s
5	16.85	150 s
8	33.02	0.08 s (GPU)
12	53.95	2.4 s

Results – KITTI 2015 Scene Flow Benchmark (Nov 2016)

200 scenes from KITTI benchmark

2.72 sec per frame

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction

Submodular Trajectory Optimization for Aerial 3D Scanning

ICCV 2017

Mike Roberts^{1,2} Debadeepta Dey² Anh Truong³ Sudipta Sinha² Shital Shah² Ashish Kapoor² Pat Hanrahan¹ Neel Joshi²

¹Stanford University ²Microsoft Research ³Adobe Research

Acquiring imagery using drones

Multi-view Stereo Reconstruction

Manual Planning Prior to Capture

- Waypoints planned by human experts ...
 - Several redundant flight trajectories were flown
- 3,500 images from 6 days with 19 ten-minute flights
- Projeto Redentor (Pix4D whitepaper, 2015)

Our Goal

- Automatically generate optimized trajectories for 3D scanning using drones, such that
- 1. the acquired images will produce an accurate 3D model when processed using a Multi View Stereo (MVS) algorithm.
- 2. the UAV makes best use of its limited flight time budget.
- Processing happens post flight.
- Battery typically lasts 15—20 minutes.

Related Work

- View selection [Hornung+ 2011]
 - First, acquire dense imagery
 - Later, select subset & process
- Next-best-view planning
 - Information-gain maximization [Isler+ 2016]
 - Robotic RGB-D 3D scanning [Wu+ 2014]
 - No travel budget constraints
- Real-time Drone view planning [Mostegel+ 2016]
 - Greedy technique; heuristic-based

Diverse Viewpoints help Multi View Stereo

Preference for

- diverging viewing angles
- close-up views
- fronto parallel views of surfaces

Coverage Measure

For a surface point S observed from multiple cameras, we define coverage as the area of the union of all the blue disks on a hemisphere.

Coverage Measure

Similarly, we define coverage for multiple surface points observed from multiple camera viewpoints.

Method

- Evaluating coverage function requires knowledge of scene geometry
- Thus, we follow a two-staged procedure.
 - 1. Fly an easy-to-generate trajectory;
 - 2. Compute coarse reconstruction (SFM \rightarrow MVS \rightarrow meshing)
 - 3. <u>Plan optimized trajectory</u> based on mesh from step 2.
 - 4. Fly trajectory computed in step 3.
 - 5. Run SFM + MVS on images from step 1 and 4.

Planning Optimized Trajectories

Graph of all possible camera location (and orientation); edge weights are Euclidean distances between locations.

Propose to solve the problem in two steps.

- 1. Solve optimal set of orientations; ignoring path constraints
- 2. Then, find the set of locations by solving a graph orienteering problem

Solving for Camera Orientations

- Coverage set function is submodular
 - Adding new elements to an existing set gives diminishing returns
- Cardinality and Mutual Exclusion Constraint
 - Select exactly one look-at vector at each position
- Constrained submodular maximization

- Always, pick the next best element with the most marginal reward
- Greedy algorithm; good theoretical approximation guarantee

Solving for Camera Positions

- Graph Orienteering Problem
 - NP-Hard; related to TSP and Knapsack

- Find short paths that let you collect most rewards (at nodes).
- In standard orienteering, rewards are additive.
- But, our reward function is submodular, not additive!
- Hence, we must solve a submodular orienteering problem.

Solving for Camera Positions

Choose a good sub-gradient

(additive approximation)

for our submodular function

Approximation yields an instance of the orienteering problem

 $\begin{array}{ll} \text{maximize} & \sum c(s) \\ \text{subject to} & T(S) < B \end{array}$

Solve as an integer linear program (ILP)

Results

- Pix4D for 3D reconstruction
 - Outputs texture-mapped 3D model
- Baselines:
 - **Overview:** Lawn-mower pattern
 - Random:

- recover coarse 3d model; estimate free space.
- select random points in free space.
- compute TSP tour.

Results

Our computed trajectories visualized in Google Earth

Barn

MSR Redmond

Results

Ours

Overhead

Random

Ours

Insert video (ICCV supplementary video here)

Outline

- Stereo Matching: New Trends
- Semi-Global Stereo Matching (SGM)
 - SGM with Surface Orientation Priors
- Stereo Scene Flow with Motion Segmentation
- Trajectory Planning for Aerial Multi View Stereo
- Deep 6D Object Pose Prediction

Real-Time Seamless Single Shot 6D Object Pose Prediction

CVPR 2018

Bugra Tekin EPFL Sudipta Sinha Microsoft Research

Pascal Fua

3D Recognition, 2D-3D Model Alignment

Given a RGB image (with known intrinsics), recognize the objects and predict their 3D position and orientation within the scene.

Classical methods:

Lowe 2001

Rothganger+ 2005

Lepetit+ 2005

- Recognizing Image Patches
- Scale, Affine invariant features
- Geometric verification (rigid scenes)

- Worked for textured, distinctive objects
- Required a small # of training images

Object 6D Pose Estimation

Given a RGB image (with known intrinsics), recognize the objects and predict their 3D position and orientation within the scene.

RGB-D methods:

- Lai+ 2010
- Hinterstoisser+ 2012
- Brachmann+ 2014, 2016
- Classical Object Recognition
- Fast Image Retrieval

CNN methods:

- Rad + Lepetit 2017
- Kehl+ 2017
- Xiang+ 2017

- Tekin+ 2018
- Oberweger+ 2018

- Global deep feature representations
- Not much use of geometry
- Promising for small, texture-less objects
- Huge training set needed

Texture-less Object 6D Pose Datasets

LINEMOD [2012] 15 objects

T-LESS [2017] 30 objects

YCB-VIDEO [2018] 21 objects

Deep 6D object pose estimation

BB8 [Rad and Lepetit 2017]

Our Method

- Single-shot 2D object detection (YOLO, SSD)
- Our CNN predicts 2D projections of 3D bounding box vertices (and the centroid). We run PnP solver on 9 2D-3D correspondences.
- Accurate, fast (50-90 fps); detects multiple objects in one pass.

Our Method

Training:

- ground truth 2D coordinates of the 9 control points are the targets
- modify YOLO loss function (for confidence estimation)
- data augmentation

Testing:

- Subpixel refinement
- PnP (RANSAC, least squares)

CNN Architecture

CNN Architecture

Results on LineMOD dataset

- Two accuracy metrics (2D image projection, 3D model overlap).
- Percentage of test images where the error was lower than specified thresholds.

Method	w/o Re	efineme	w/ Refinement		
	Brachmann	BB8	OURS	Brachmann	BB8
Object	[2]	[25]		[2]	[25]
Ape	-	95.3	92.10	85.2	96.6
Benchvise	Rectangular Snip	80.0	95.06	67.9	90.1
Cam	-	80.9	93.24	58.7	86.0
Can	-	84.1	97.44	70.8	91.2
Cat	-	97.0	97.41	84.2	98.8
Driller	-	74.1	79.41	73.9	80.9
Duck	-	81.2	94.65	73.1	92.2
Eggbox	-	87.9	90.33	83.1	91.0
Glue	-	89.0	96.53	74.2	92.3
Holepuncher	-	90.5	92.86	78.9	95.3
Iron	-	78.9	82.94	83.6	84.8
Lamp	-	74.4	76.87	64.0	75.8
Phone	-	77.6	86.07	60.6	85.3
Average	69.5	83.9	90.37	73.7	89.3

2D metric

3D metric

Method	w/e	o Refi	nement		w/ Re	finem	ent
	Brachmann	BB8	SSD-6D	OURS	Brachmann	BB8	SSD-6D
Object	[2]	[25]	[10]		[2]	[25]	[10]
Ape	-	27.9	0	21.62	33.2	40.4	65
Benchvise	-	62.0	0.18	81.80	64.8	91.8	80
Cam	-	40.1	0.41	36.57	38.4	55.7	78
Can	-	48.1	1.35	68.80	62.9	64.1	86
Cat	-	45.2	0.51	41.82	42.7	62.6	70
Driller	-	58.6	2.58	63.51	61.9	74.4	73
Duck	-	32.8	0	27.23	30.2	44.3	66
Eggbox	-	40.0	8.9	69.58	49.9	57.8	100
Glue	-	27.0	0	80.02	31.2	41.2	100
Holepuncher	-	42.4	0.30	42.63	52.8	67.2	49
Iron	-	67.0	8.86	74.97	80.0	84.7	78
Lamp	-	39.9	8.20	71.11	67.0	76.5	73
Phone	-	35.2	0.18	47.74	38.1	54.0	79
Average	32.3	43.6	2.42	55.95	50.2	62.7	79

Results on LineMOD dataset

Running Times:

On TitanX or similar GPU.

using cuDNN

Method	Overall speed for 1 object	Refinement runtime
Brachmann et al. [2]	2 fps	100 ms/object
Rad & Lepetit [25]	3 fps	21 ms/object
Kehl et al. [10]	10 fps	24 ms/object
OURS	50 fps	-

Method	2D projection metric	Speed	
416 × 416	89.71	94 fps	
480 imes 480	90.00	67 fps	
544×544	90.37	50 fps	
688 imes 688	90.65	43 fps	

When input image is resized, our method remains accurate and runs much faster

Conclusions

- State of the art in stereo matching; new challenges
- Improvements to Semi Global Matching
 - Incorporating soft surface orientation priors
- Fast scene flow with motion segmentation
- Camera path planning for improved multi-view stereo
- Deep single shot 6D object pose estimation
 - CNN architecture conceptually simpler (~YOLO architecture) and faster