Dense correspondence recovery involving images and 3D models

Sudipta N. Sinha

Microsoft Research

University of Utah, March 27, 2018

Introduction

- Estimate correspondences and align multiple entities
 - Image to image (stereo, optical flow, scene flow ...)
 - Image to 3D model (object recognition, pose estimation ...)
- Applications:
 - <u>Vision</u>: image stitching, structure from motion, visual odometry, SLAM, camera localization, 3D mapping, 4D reconstruction, ...
 - Augmented Reality: object recognition, 6D pose recovery, tracking
 - Robotics: localization, avoiding obstacles, object grasping & moving

Dense Image Correspondence

Binocular stereo

L)

Multi-view stereo

Optical flow

Scene Flow

flow

Dense Image 3D Model Correspondence

- Task: recognize object instances in an image, find pose of associated 3D models; project 3D model to get dense alignment.
- Need training data (images, models, annotation); real images vs. CG
- Challenges: scene clutter, low texture, difficult lighting, low resolution

Outline

- Global Stereo Matching with piecewise-planar priors
- Semi-global Matching (SGM)
 - Local plane-sweep stereo
 - SGM with surface orientation priors
- Stereoscopic Scene Flow
- Deep Single-shot 6D Object Instance Detection

Stereo Matching

Left Disparity Map

- Dense pixel correspondence in rectified pairs
- Disparity Map: D(x, y)

$$x' = x + D(x, y), \quad y' = y$$

• Depth Map: $Z(x, y) = \frac{bf}{D(x, y)}$

Depth Map

Stereo Matching

Binocular Stereo Matching

Local Optimization

- Minimize matching cost at each pixel independently
- Winner-take-all (WTA)

$$C_{SAD}(\mathbf{p},\mathbf{d}) = \sum_{\mathbf{q}\in N_{\mathbf{p}}} |I_L(\mathbf{q}) - I_R(\mathbf{q}-\mathbf{d})|$$

$$\begin{split} C_{ZNCC}(\mathbf{p},\mathbf{d}) &= \\ \frac{\sum_{\mathbf{q}\in N_{\mathbf{p}}}(I_{L}(\mathbf{q}) - \bar{I}_{L}(\mathbf{p}))(I_{R}(\mathbf{q}-\mathbf{d}) - \bar{I}_{R}(\mathbf{p}-\mathbf{d}))}{\sqrt{\sum_{\mathbf{q}\in N_{\mathbf{p}}}(I_{L}(\mathbf{q}) - \bar{I}_{L}(\mathbf{p}))^{2}\sum_{\mathbf{q}\in N_{\mathbf{p}}}(I_{R}(\mathbf{q}-\mathbf{d}) - \bar{I}_{R}(\mathbf{p}-\mathbf{d}))^{2}} \end{split}$$

Convolutional Neural Nets
[Zbontar and Lecun 2015]

Stereo benchmarks

Kim+ 2013

Middlebury (2005)

(5 — 6 MPixels)

(10-20 Mpixels)

ETH3D (2017) ↓

Still challenging ...

Fore-shortening

Specular

Transparency, reflections

- Corner cases:
 - Challenging geometry
 - Complex appearance
- High resolution imagery
- Real-time platforms, resource-constraints

Untextured slanted surfaces

Different lighting

Priors for Stereo Matching

- Stereo matching is an ill-posed problem
- Priors provides robustness to ambiguity and noise, e.g.
 - Smoothness prior (1st –order , 2nd –order ...)
 - Discontinuities favored at image edges
 - Soft color segmentation cues (superpixels ...)
- Priors explicitly added to optimization objective
- Priors terms in objective can be learned from training data

Outline

- Global Stereo Matching with piecewise-planar priors
- Semi-global Matching (SGM)
 - Local plane-sweep stereo
 - SGM with surface orientation priors
- Stereoscopic Scene Flow
- Deep Single-shot 6D Object Instance Detection

Global Optimization

- Find a per-pixel label map (D) (find all disparities jointly)
- Labels are discrete (ordered), $d \in L_D$

$$L_{\rm D} = [d_{min}, d_{max}]$$

• Optimize:

$$E(D) = E_{data}(D) + E_{smooth}(D)$$

- Data term encodes matching costs
- Smoothness term encodes prior/regularization
 - Example: neighboring pixels favored to take similar labels

Global Optimization

- Inference on Markov Random Fields (MRF)
- Minimize objective (energy):

$$E(D) = E_{data}(D) + E_{smooth}(L)$$

= $\sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$

 $C_p(d_p)$: matching cost term (*tabular representation*) $V_{pq}(d, d')$: pairwise term (Potts, truncated linear or quadratic ...) <u>contrast sensitive Potts model</u> favors discontinuity at image edges

Global Optimization

- Binary MRFs:
 - Efficient, exact methods known
 - Submodular V(*,*): s-t mincut problem
- Multi-label MRFs:
 - NP-Hard, for useful choice of V_{pq}(*,*)
 - Discontinuity-preserving Potts model.
 - Approximation algorithms
 - Move-making (via binary graph cuts)

 α - expansion move

Stereo matching with planar priors

[Sinha, Steedly, Szeliski 2009]

Multiple Plane Detection

Structure from motion

3D Line Reconstruction

MRF optimization

Stereo matching with planar priors

Image-based Rendering

Brownhouse (55 images)

Image-based Rendering

Stereo matching with planar priors

- Tackle *more* general scenes
- Plane hypotheses generated via local fitting
- Now, alternate between
 - Learning surface color models (online)
 - Graph cut optimization

Semi-global stereo (SGM)

Find planes

Depth map

[Kowdle, Sinha, Szeliski 2012]

Stereo matching with planar priors

[Kowdle, Sinha, Szeliski 2012]

Image-based Rendering

Review: Stereo with planar priors

- MRF labels: planes (surfaces), NOT disparities.
- Estimated depth maps often approximate

✓ accurate recovery of occlusion boundaries, surface normals

✓ effective 2.5D proxies for novel view synthesis

Limitations:

× Planarity prior too strong for general scenes

× Plane proposal generation is key; often imperfect

Outline

- Global Stereo Matching with piecewise-planar priors
- Semi-global Matching (SGM)
 - Local plane-sweep stereo
 - SGM with surface orientation priors
- Stereoscopic Scene Flow
- Deep Single-shot 6D Object Instance Detection

Semi Global Matching [Hirschmüller 2005]

- MRF inference (graph cuts, BP, ..) too slow
- SGM: Approximate even more; use heuristics
 - Parallelizable; practical on FPGA / GPUs
 - Widely used for assisted driving, robotics, aerial mapping ...

Scanline Optimization (1D)

Minimize:

$$E(D) = \sum_{p \in I} C_p(d_p) + \sum_{(p,q) \in N} V_{pq}(d_p, d_q)$$

- Consider the above problem on a 1D scanline.
- Compute an aggregated matching cost

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p} - \mathbf{r},d') + V(d,d')).$$

• $\mathbf{r} = (1, 0)$: start at leftmost pixel, scan left

Semi Global Matching (SGM)

- For 8 directions
 - calculate aggregated costs

$$L_{\mathbf{r}}(\mathbf{p},d) = C_{\mathbf{p}}(d) + \min_{d' \in \mathcal{D}} (L_{\mathbf{r}}(\mathbf{p}-\mathbf{r},d') + V(d,d')).$$

Finally, sum the costs and select per-pixel minima.

$$S(\mathbf{p}, d) = \sum_{\mathbf{r}} L_{\mathbf{r}}(\mathbf{p}, d)$$
$$D_{\mathbf{p}} = \arg\min_{d} S(\mathbf{p}, d).$$

Semi Global Matching (SGM)

Semi Global Matching [Hirschmüller 2005]

Approximates 2D MRF using 1D optimization

along 8 cardinal directions

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

related to Belief Propagation
[Drory et al. 2014]

Semi Global Matching [Hirschmüller 2005]

Approximates 2D MRF using 1D optimization

along 8 cardinal directions

- rela

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

Evaluates the whole DSI

Inefficient for high-resolution images

Outline

- Global Stereo Matching with piecewise-planar priors
- Semi-global Matching (SGM)
 - Local plane-sweep stereo
 - SGM with surface orientation priors
- Stereoscopic Scene Flow
- Deep Single-shot 6D Object Instance Detection

- Solve many local plane sweep stereo (LPS) problems
- Generates surface proposals; fuse them into a disparity map

Outline

- Global Stereo Matching with piecewise-planar priors
- Semi-global Matching (SGM)
 - Local plane-sweep stereo
 - SGM with surface orientation priors
- Stereoscopic Scene Flow
- Deep Single-shot 6D Object Instance Detection

Semi Global Matching [Hirschmüller 2005]

Approximates 2D MRF using 1D optimization along 8 cardinal directions

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$
$$V(d, d') = \begin{cases} 0 & \text{if } d = d' \\ P_1 & \text{if } |d - d'| = 1 \\ P_2 & \text{if } |d - d'| \ge 2 \end{cases}$$

Semi Global Matching [Hirschmüller 2005]

Approximates 2D MRF using 1D optimization along 8 cardinal directions

$$E(D) = \sum_{\mathbf{p}} C_{\mathbf{p}}(d_{\mathbf{p}}) + \sum_{\mathbf{p}, \mathbf{q} \in \mathcal{N}} V(d_{\mathbf{p}}, d_{\mathbf{q}})$$

$$\int 0 \quad \text{if } d = d'$$

Fronto parallel bias

Inaccurate on slanted untextured surfaces

Left image

GT disparities

SGM @ quarter resolution

SGM @ full resolution (6 MP)

SGM-P: SGM with orientation priors

[Scharstein, Taniai, Sinha, 3DV 2017]

- What if we knew the surface slant?
- Replace fronto-parallel bias with bias parallel to surface

Idea:

- Rasterize disparity surface prior (at arbitrary depth)
- Adjust V(d, d') to follow discrete disparity "steps"

SGM-P: 2D orientation priors

SGM-P: 3D orientation priors

vary with disparity

SGM-P: Where do we get priors?

- Matched features + triangulation
- Matched features + plane fitting
- Low-res matching + plane fitting
- Ground truth oracle
- Semantic analysis
- Manhattan-world assumptions

SGM-P: Results

SGM-P: Results

SGM-P: Results

Fast Multi-frame Stereo Scene Flow with Motion Segmentation Taniai, Sinha, Sato 2017

Input: Stereo Video

Left

Right

Output

Disparity Map

Optical Flow

Moving object segmentation

Fast Multi-frame Stereo Scene Flow with Motion Segmentation Taniai, Sinha, Sato 2017

KITTI 2015 Scene Flow Benchmark (Nov 2016)

Rank	Method	D1-bg	D1-fg	D1-all	D2-bg	D2-fg	D2-all	Fl-bg	Fl-fg	Fl-all	SF-bg	SF-fg	SF-all	Time
1	PRSM [43]	3.02	10.52	4.27	5.13	15.11	6.79	5.33	17.02	7.28	6.61	23.60	9.44	300 s
2	OSF [30]	4.54	12.03	5.79	5.45	19.41	7.77	5.62	22.17	8.37	7.01	28.76	10.63	50 min
3	FSF+MS (ours)	5.72	11.84	6.74	7.57	21.28	9.85	8.48	29.62	12.00	11.17	37.40	15.54	2.7 s
4	CSF [28]	4.57	13.04	5.98	7.92	20.76	10.06	10.40	30.33	13.71	12.21	36.97	16.33	80 s
5	PR-Sceneflow [42]	4.74	13.74	6.24	11.14	20.47	12.69	11.73	27.73	14.39	13.49	33.72	16.85	150 s
8	PCOF + ACTF [10]	6.31	19.24	8.46	19.15	36.27	22.00	14.89	62.42	22.80	25.77	69.35	33.02	0.08 s (GPU)
12	GCSF [8]	11.64	27.11	14.21	32.94	35.77	33.41	47.38	45.08	47.00	52.92	59.11	53.95	2.4 s

Outline

- Global Stereo Matching with piecewise-planar priors
- Semi-global Matching (SGM)
 - Local plane-sweep stereo
 - SGM with surface orientation priors
- Stereoscopic Scene Flow
- Deep Single-shot 6D Object Instance Detection

Object recognition + pose estimation

 <u>Task:</u> Given a RGB image (with known camera intrinsics), recognize the object instance and predict its 3D position and orientation.

Lowe 2001

Rothganger+ 2005

- Local features (SIFT, Affine invariance)
- Textured, distinctive objects
- Geometric verification
- A few training images are fine ..

Hinterstoisser+ 2012 Brachmann+ 2014, 16

CNN-based

Rad + Lepetit 2017, Kehl+ 2017, Xiang+ 2017

- Global deep features
- Geometry not used
- small, texture-less objects
- Huge training set needed

Texture-less Object 6D Pose Datasets

LINEMOD [2012] 15 objects

T-LESS [2017] 30 objects

YCB-VIDEO [2018] 21 objects

Deep 6D object pose estimation

BB8 [Rad and Lepetit 2017]

SSD-6D [Kehl+ 2017]

$$\begin{array}{c|c} \operatorname{image} & & & \\ & &$$

3D bounding box corner predictor

pose solver

- Single-shot 2D object detection (YOLO, SSD)
- Our CNN predicts 2D projections of 3D bounding box vertices (+ centroid). We run PnP solver on 9 2D-3D correspondences.
- Accurate, fast (50-90 fps); detects multiple objects in one pass.

Training:

- ground truth 2D coordinates of the 9 control points are the targets
- modify YOLO loss function (for confidence estimation)
- data augmentation

Testing:

Subpixel refinement

PnP (RANSAC, least squares)

- Accuracy w.r.t. two metrics (2D projection, 3D overlap)
 - Percentage of test images where the error was within a threshold

Method	w/o Re	w/o Refinement w/ Refineme				
	Brachmann	BB8	OURS	Brachmann	BB8	
Object	[2]	[25]		[2]	[25]	
Ape	-	95.3	92.10	85.2	96.6	
Benchvise	Rectangular Snip	80.0	95.06	67.9	90.1	
Cam	-	80.9	93.24	58.7	86.0	
Can	-	84.1	97.44	70.8	91.2	
Cat	-	97.0	97.41	84.2	98.8	
Driller	-	74.1	79.41	73.9	80.9	
Duck	-	81.2	94.65	73.1	92.2	
Eggbox	-	87.9	90.33	83.1	91.0	
Glue	-	89.0	96.53	74.2	92.3	
Holepuncher	-	90.5	92.86	78.9	95.3	
Iron	-	78.9	82.94	83.6	84.8	
Lamp	-	74.4	76.87	64.0	75.8	
Phone	-	77.6	86.07	60.6	85.3	
Average	69.5	83.9	90.37	73.7	89.3	

2D metric

3D metric

Method	w/o Refinement				w/ Refinement			
	Brachmann	BB8	SSD-6D	OURS	Brachmann	BB8	SSD-6D	
Object	[2]	[25]	[10]		[2]	[25]	[<mark>10</mark>]	
Ape	-	27.9	0	21.62	33.2	40.4	65	
Benchvise	-	62.0	0.18	81.80	64.8	91.8	80	
Cam	-	40.1	0.41	36.57	38.4	55.7	78	
Can	-	48.1	1.35	68.80	62.9	64.1	86	
Cat	-	45.2	0.51	41.82	42.7	62.6	70	
Driller	-	58.6	2.58	63.51	61.9	74.4	73	
Duck	-	32.8	0	27.23	30.2	44.3	66	
Eggbox	-	40.0	8.9	69.5 8	49.9	57.8	100	
Glue	-	27.0	0	80.02	31.2	41.2	100	
Holepuncher	-	42.4	0.30	42.63	52.8	67.2	49	
Iron	-	67.0	8.86	7 4.9 7	80.0	84.7	78	
Lamp	-	39.9	8.20	71.11	67.0	76.5	73	
Phone	-	35.2	0.18	47.74	38.1	54.0	79	
Average	32.3	43.6	2.42	55.95	50.2	62.7	79	

Running Times:

On TitanX or similar GPU.

using cuDNN

Method	Overall speed for 1 object	Refinement runtime
Brachmann et al. [2]	2 fps	100 ms/object
Rad & Lepetit [25]	3 fps	21 ms/object
Kehl et al. [10]	10 fps	24 ms/object
OURS	50 fps	-

Method	2D projection metric	Speed	
416 × 416	89.71	94 fps	
480×480	90.00	67 fps	
544×544	90.37	50 fps	
688×688	90.65	43 fps	

When input image is resized, our method remains accurate and runs much faster

Summary

- Image Image Correspondence
 - Stereo Matching
 - Algorithmic improvements with different trade-offs
 - Unified Stereoscopic Scene flow estimation
 - Main insight: Solving more improves accuracy but <u>also speed</u>
- Image 3D model alignment
 - 6D Object detection and Pose Estimation
 - Predict 2D control point locations in image; solve pose algebraically

Collaborators

Tatsunori Taniai RIKEN, Tokyo

Daniel Scharstein Middlebury College

Rick Szeliski Facebook

Drew Steedly Microsoft

Yoichi Sato Univ. of Tokyo

Adarsh Kowdle Google

Bugra Tekin EPFL

Pascal Fua EPFL